Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbl4 Structured version   Visualization version   GIF version

Theorem ismbl4 45974
Description: The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl 25425, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
ismbl4 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl4
StepHypRef Expression
1 ismbl3 45967 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
2 elpwi 4558 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
3 ovolcl 25377 . . . . . . . . 9 (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ ℝ*)
42, 3syl 17 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ ℝ*)
54adantr 480 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → (vol*‘𝑥) ∈ ℝ*)
6 inss1 4188 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
76, 2sstrid 3947 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
8 ovolcl 25377 . . . . . . . . . 10 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
97, 8syl 17 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
102ssdifssd 4098 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
11 ovolcl 25377 . . . . . . . . . 10 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
1210, 11syl 17 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
139, 12xaddcld 13203 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ*)
1413adantr 480 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ*)
152ovolsplit 45969 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
1615adantr 480 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → (vol*‘𝑥) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
17 simpr 484 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
185, 14, 16, 17xrletrid 13057 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
1918ex 412 . . . . 5 (𝑥 ∈ 𝒫 ℝ → (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
2013xrleidd 13054 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
2120adantr 480 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
22 id 22 . . . . . . . . 9 ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
2322eqcomd 2735 . . . . . . . 8 ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = (vol*‘𝑥))
2423adantl 481 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = (vol*‘𝑥))
2521, 24breqtrd 5118 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
2625ex 412 . . . . 5 (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
2719, 26impbid 212 . . . 4 (𝑥 ∈ 𝒫 ℝ → (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ↔ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
2827ralbiia 3073 . . 3 (∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ↔ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
2928anbi2i 623 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
301, 29bitri 275 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3900  cin 3902  wss 3903  𝒫 cpw 4551   class class class wbr 5092  dom cdm 5619  cfv 6482  (class class class)co 7349  cr 11008  *cxr 11148  cle 11150   +𝑒 cxad 13012  vol*covol 25361  volcvol 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xadd 13015  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-ovol 25363  df-vol 25364
This theorem is referenced by:  vonvolmbl  46642
  Copyright terms: Public domain W3C validator