Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbl4 Structured version   Visualization version   GIF version

Theorem ismbl4 45953
Description: The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl 25516, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
ismbl4 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl4
StepHypRef Expression
1 ismbl3 45946 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
2 elpwi 4589 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
3 ovolcl 25468 . . . . . . . . 9 (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ ℝ*)
42, 3syl 17 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ ℝ*)
54adantr 480 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → (vol*‘𝑥) ∈ ℝ*)
6 inss1 4219 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
76, 2sstrid 3977 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
8 ovolcl 25468 . . . . . . . . . 10 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
97, 8syl 17 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
102ssdifssd 4129 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
11 ovolcl 25468 . . . . . . . . . 10 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
1210, 11syl 17 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
139, 12xaddcld 13326 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ*)
1413adantr 480 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ*)
152ovolsplit 45948 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
1615adantr 480 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → (vol*‘𝑥) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
17 simpr 484 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
185, 14, 16, 17xrletrid 13180 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
1918ex 412 . . . . 5 (𝑥 ∈ 𝒫 ℝ → (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
2013xrleidd 13177 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
2120adantr 480 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
22 id 22 . . . . . . . . 9 ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
2322eqcomd 2740 . . . . . . . 8 ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = (vol*‘𝑥))
2423adantl 481 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = (vol*‘𝑥))
2521, 24breqtrd 5151 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
2625ex 412 . . . . 5 (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
2719, 26impbid 212 . . . 4 (𝑥 ∈ 𝒫 ℝ → (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ↔ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
2827ralbiia 3079 . . 3 (∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ↔ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
2928anbi2i 623 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
301, 29bitri 275 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  cdif 3930  cin 3932  wss 3933  𝒫 cpw 4582   class class class wbr 5125  dom cdm 5667  cfv 6542  (class class class)co 7414  cr 11137  *cxr 11277  cle 11279   +𝑒 cxad 13135  vol*covol 25452  volcvol 25453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-q 12974  df-rp 13018  df-xadd 13138  df-ioo 13374  df-ico 13376  df-icc 13377  df-fz 13531  df-fl 13815  df-seq 14026  df-exp 14086  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-ovol 25454  df-vol 25455
This theorem is referenced by:  vonvolmbl  46621
  Copyright terms: Public domain W3C validator