![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reneg | Structured version Visualization version GIF version |
Description: Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
reneg | ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl 15084 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
2 | 1 | recnd 11267 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
3 | ax-icn 11192 | . . . . . 6 ⊢ i ∈ ℂ | |
4 | imcl 15085 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
5 | 4 | recnd 11267 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
6 | mulcl 11217 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
7 | 3, 5, 6 | sylancr 586 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
8 | 2, 7 | negdid 11609 | . . . 4 ⊢ (𝐴 ∈ ℂ → -((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = (-(ℜ‘𝐴) + -(i · (ℑ‘𝐴)))) |
9 | replim 15090 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
10 | 9 | negeqd 11479 | . . . 4 ⊢ (𝐴 ∈ ℂ → -𝐴 = -((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
11 | mulneg2 11676 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) | |
12 | 3, 5, 11 | sylancr 586 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) |
13 | 12 | oveq2d 7431 | . . . 4 ⊢ (𝐴 ∈ ℂ → (-(ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = (-(ℜ‘𝐴) + -(i · (ℑ‘𝐴)))) |
14 | 8, 10, 13 | 3eqtr4d 2778 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 = (-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) |
15 | 14 | fveq2d 6896 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = (ℜ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴))))) |
16 | 1 | renegcld 11666 | . . 3 ⊢ (𝐴 ∈ ℂ → -(ℜ‘𝐴) ∈ ℝ) |
17 | 4 | renegcld 11666 | . . 3 ⊢ (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ) |
18 | crre 15088 | . . 3 ⊢ ((-(ℜ‘𝐴) ∈ ℝ ∧ -(ℑ‘𝐴) ∈ ℝ) → (ℜ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℜ‘𝐴)) | |
19 | 16, 17, 18 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℜ‘𝐴)) |
20 | 15, 19 | eqtrd 2768 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6543 (class class class)co 7415 ℂcc 11131 ℝcr 11132 ici 11135 + caddc 11136 · cmul 11138 -cneg 11470 ℜcre 15071 ℑcim 15072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-2 12300 df-cj 15073 df-re 15074 df-im 15075 |
This theorem is referenced by: resub 15101 cjneg 15121 sqeqd 15140 renegi 15154 renegd 15183 cnpart 15214 asinsin 26818 ftc1anclem6 37166 sqrtcvallem4 43060 |
Copyright terms: Public domain | W3C validator |