Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reprf | Structured version Visualization version GIF version |
Description: Members of the representation of 𝑀 as the sum of 𝑆 nonnegative integers from set 𝐴 as functions. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
Ref | Expression |
---|---|
reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
reprf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) |
Ref | Expression |
---|---|
reprf | ⊢ (𝜑 → 𝐶:(0..^𝑆)⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reprf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) | |
2 | reprval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
3 | reprval.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | reprval.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
5 | 2, 3, 4 | reprval 32490 | . . 3 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
6 | 1, 5 | eleqtrd 2841 | . 2 ⊢ (𝜑 → 𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
7 | elrabi 3611 | . 2 ⊢ (𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} → 𝐶 ∈ (𝐴 ↑m (0..^𝑆))) | |
8 | elmapi 8595 | . 2 ⊢ (𝐶 ∈ (𝐴 ↑m (0..^𝑆)) → 𝐶:(0..^𝑆)⟶𝐴) | |
9 | 6, 7, 8 | 3syl 18 | 1 ⊢ (𝜑 → 𝐶:(0..^𝑆)⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 0cc0 10802 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ..^cfzo 13311 Σcsu 15325 reprcrepr 32488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-map 8575 df-neg 11138 df-nn 11904 df-z 12250 df-seq 13650 df-sum 15326 df-repr 32489 |
This theorem is referenced by: reprle 32494 reprsuc 32495 hashreprin 32500 reprpmtf1o 32506 reprdifc 32507 breprexplema 32510 breprexplemc 32512 breprexpnat 32514 circlemeth 32520 circlevma 32522 circlemethhgt 32523 hgt750lemb 32536 hgt750lema 32537 hgt750leme 32538 tgoldbachgtde 32540 tgoldbachgt 32543 |
Copyright terms: Public domain | W3C validator |