| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reprf | Structured version Visualization version GIF version | ||
| Description: Members of the representation of 𝑀 as the sum of 𝑆 nonnegative integers from set 𝐴 as functions. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| reprf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) |
| Ref | Expression |
|---|---|
| reprf | ⊢ (𝜑 → 𝐶:(0..^𝑆)⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reprf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) | |
| 2 | reprval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 3 | reprval.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | reprval.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 5 | 2, 3, 4 | reprval 34608 | . . 3 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 6 | 1, 5 | eleqtrd 2831 | . 2 ⊢ (𝜑 → 𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 7 | elrabi 3657 | . 2 ⊢ (𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} → 𝐶 ∈ (𝐴 ↑m (0..^𝑆))) | |
| 8 | elmapi 8825 | . 2 ⊢ (𝐶 ∈ (𝐴 ↑m (0..^𝑆)) → 𝐶:(0..^𝑆)⟶𝐴) | |
| 9 | 6, 7, 8 | 3syl 18 | 1 ⊢ (𝜑 → 𝐶:(0..^𝑆)⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 ..^cfzo 13622 Σcsu 15659 reprcrepr 34606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-map 8804 df-neg 11415 df-nn 12194 df-z 12537 df-seq 13974 df-sum 15660 df-repr 34607 |
| This theorem is referenced by: reprle 34612 reprsuc 34613 hashreprin 34618 reprpmtf1o 34624 reprdifc 34625 breprexplema 34628 breprexplemc 34630 breprexpnat 34632 circlemeth 34638 circlevma 34640 circlemethhgt 34641 hgt750lemb 34654 hgt750lema 34655 hgt750leme 34656 tgoldbachgtde 34658 tgoldbachgt 34661 |
| Copyright terms: Public domain | W3C validator |