|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reprf | Structured version Visualization version GIF version | ||
| Description: Members of the representation of 𝑀 as the sum of 𝑆 nonnegative integers from set 𝐴 as functions. (Contributed by Thierry Arnoux, 5-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) | 
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) | 
| reprf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) | 
| Ref | Expression | 
|---|---|
| reprf | ⊢ (𝜑 → 𝐶:(0..^𝑆)⟶𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reprf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) | |
| 2 | reprval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 3 | reprval.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | reprval.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 5 | 2, 3, 4 | reprval 34625 | . . 3 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) | 
| 6 | 1, 5 | eleqtrd 2843 | . 2 ⊢ (𝜑 → 𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) | 
| 7 | elrabi 3687 | . 2 ⊢ (𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} → 𝐶 ∈ (𝐴 ↑m (0..^𝑆))) | |
| 8 | elmapi 8889 | . 2 ⊢ (𝐶 ∈ (𝐴 ↑m (0..^𝑆)) → 𝐶:(0..^𝑆)⟶𝐴) | |
| 9 | 6, 7, 8 | 3syl 18 | 1 ⊢ (𝜑 → 𝐶:(0..^𝑆)⟶𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3436 ⊆ wss 3951 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 0cc0 11155 ℕcn 12266 ℕ0cn0 12526 ℤcz 12613 ..^cfzo 13694 Σcsu 15722 reprcrepr 34623 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-addcl 11215 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-map 8868 df-neg 11495 df-nn 12267 df-z 12614 df-seq 14043 df-sum 15723 df-repr 34624 | 
| This theorem is referenced by: reprle 34629 reprsuc 34630 hashreprin 34635 reprpmtf1o 34641 reprdifc 34642 breprexplema 34645 breprexplemc 34647 breprexpnat 34649 circlemeth 34655 circlevma 34657 circlemethhgt 34658 hgt750lemb 34671 hgt750lema 34672 hgt750leme 34673 tgoldbachgtde 34675 tgoldbachgt 34678 | 
| Copyright terms: Public domain | W3C validator |