Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprf Structured version   Visualization version   GIF version

Theorem reprf 31957
Description: Members of the representation of 𝑀 as the sum of 𝑆 nonnegative integers from set 𝐴 as functions. (Contributed by Thierry Arnoux, 5-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprf.c (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
Assertion
Ref Expression
reprf (𝜑𝐶:(0..^𝑆)⟶𝐴)

Proof of Theorem reprf
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprf.c . . 3 (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
2 reprval.a . . . 4 (𝜑𝐴 ⊆ ℕ)
3 reprval.m . . . 4 (𝜑𝑀 ∈ ℤ)
4 reprval.s . . . 4 (𝜑𝑆 ∈ ℕ0)
52, 3, 4reprval 31955 . . 3 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
61, 5eleqtrd 2916 . 2 (𝜑𝐶 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
7 elrabi 3650 . 2 (𝐶 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} → 𝐶 ∈ (𝐴m (0..^𝑆)))
8 elmapi 8415 . 2 (𝐶 ∈ (𝐴m (0..^𝑆)) → 𝐶:(0..^𝑆)⟶𝐴)
96, 7, 83syl 18 1 (𝜑𝐶:(0..^𝑆)⟶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114  {crab 3134  wss 3908  wf 6330  cfv 6334  (class class class)co 7140  m cmap 8393  0cc0 10526  cn 11625  0cn0 11885  cz 11969  ..^cfzo 13028  Σcsu 15033  reprcrepr 31953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-addcl 10586
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-map 8395  df-neg 10862  df-nn 11626  df-z 11970  df-seq 13365  df-sum 15034  df-repr 31954
This theorem is referenced by:  reprle  31959  reprsuc  31960  hashreprin  31965  reprpmtf1o  31971  reprdifc  31972  breprexplema  31975  breprexplemc  31977  breprexpnat  31979  circlemeth  31985  circlevma  31987  circlemethhgt  31988  hgt750lemb  32001  hgt750lema  32002  hgt750leme  32003  tgoldbachgtde  32005  tgoldbachgt  32008
  Copyright terms: Public domain W3C validator