![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reprf | Structured version Visualization version GIF version |
Description: Members of the representation of π as the sum of π nonnegative integers from set π΄ as functions. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
Ref | Expression |
---|---|
reprval.a | β’ (π β π΄ β β) |
reprval.m | β’ (π β π β β€) |
reprval.s | β’ (π β π β β0) |
reprf.c | β’ (π β πΆ β (π΄(reprβπ)π)) |
Ref | Expression |
---|---|
reprf | β’ (π β πΆ:(0..^π)βΆπ΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reprf.c | . . 3 β’ (π β πΆ β (π΄(reprβπ)π)) | |
2 | reprval.a | . . . 4 β’ (π β π΄ β β) | |
3 | reprval.m | . . . 4 β’ (π β π β β€) | |
4 | reprval.s | . . . 4 β’ (π β π β β0) | |
5 | 2, 3, 4 | reprval 34086 | . . 3 β’ (π β (π΄(reprβπ)π) = {π β (π΄ βm (0..^π)) β£ Ξ£π β (0..^π)(πβπ) = π}) |
6 | 1, 5 | eleqtrd 2834 | . 2 β’ (π β πΆ β {π β (π΄ βm (0..^π)) β£ Ξ£π β (0..^π)(πβπ) = π}) |
7 | elrabi 3677 | . 2 β’ (πΆ β {π β (π΄ βm (0..^π)) β£ Ξ£π β (0..^π)(πβπ) = π} β πΆ β (π΄ βm (0..^π))) | |
8 | elmapi 8849 | . 2 β’ (πΆ β (π΄ βm (0..^π)) β πΆ:(0..^π)βΆπ΄) | |
9 | 6, 7, 8 | 3syl 18 | 1 β’ (π β πΆ:(0..^π)βΆπ΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 {crab 3431 β wss 3948 βΆwf 6539 βcfv 6543 (class class class)co 7412 βm cmap 8826 0cc0 11116 βcn 12219 β0cn0 12479 β€cz 12565 ..^cfzo 13634 Ξ£csu 15639 reprcrepr 34084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-addcl 11176 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-map 8828 df-neg 11454 df-nn 12220 df-z 12566 df-seq 13974 df-sum 15640 df-repr 34085 |
This theorem is referenced by: reprle 34090 reprsuc 34091 hashreprin 34096 reprpmtf1o 34102 reprdifc 34103 breprexplema 34106 breprexplemc 34108 breprexpnat 34110 circlemeth 34116 circlevma 34118 circlemethhgt 34119 hgt750lemb 34132 hgt750lema 34133 hgt750leme 34134 tgoldbachgtde 34136 tgoldbachgt 34139 |
Copyright terms: Public domain | W3C validator |