![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reprsum | Structured version Visualization version GIF version |
Description: Sums of values of the members of the representation of 𝑀 equal 𝑀. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
Ref | Expression |
---|---|
reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
reprf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) |
Ref | Expression |
---|---|
reprsum | ⊢ (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reprf.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) | |
2 | reprval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
3 | reprval.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | reprval.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
5 | 2, 3, 4 | reprval 34604 | . . . 4 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
6 | 1, 5 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
7 | fveq1 6906 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑐‘𝑎) = (𝐶‘𝑎)) | |
8 | 7 | sumeq2sdv 15736 | . . . . 5 ⊢ (𝑐 = 𝐶 → Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎)) |
9 | 8 | eqeq1d 2737 | . . . 4 ⊢ (𝑐 = 𝐶 → (Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀 ↔ Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀)) |
10 | 9 | elrab 3695 | . . 3 ⊢ (𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ↔ (𝐶 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀)) |
11 | 6, 10 | sylib 218 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀)) |
12 | 11 | simprd 495 | 1 ⊢ (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 0cc0 11153 ℕcn 12264 ℕ0cn0 12524 ℤcz 12611 ..^cfzo 13691 Σcsu 15719 reprcrepr 34602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-neg 11493 df-nn 12265 df-z 12612 df-seq 14040 df-sum 15720 df-repr 34603 |
This theorem is referenced by: reprle 34608 reprsuc 34609 reprpmtf1o 34620 hgt750lemb 34650 tgoldbachgt 34657 |
Copyright terms: Public domain | W3C validator |