Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprsum Structured version   Visualization version   GIF version

Theorem reprsum 34580
Description: Sums of values of the members of the representation of 𝑀 equal 𝑀. (Contributed by Thierry Arnoux, 5-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprf.c (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
Assertion
Ref Expression
reprsum (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀)
Distinct variable groups:   𝑆,𝑎   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝑀(𝑎)

Proof of Theorem reprsum
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 reprf.c . . . 4 (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
2 reprval.a . . . . 5 (𝜑𝐴 ⊆ ℕ)
3 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
4 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
52, 3, 4reprval 34577 . . . 4 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
61, 5eleqtrd 2830 . . 3 (𝜑𝐶 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
7 fveq1 6825 . . . . . 6 (𝑐 = 𝐶 → (𝑐𝑎) = (𝐶𝑎))
87sumeq2sdv 15628 . . . . 5 (𝑐 = 𝐶 → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎))
98eqeq1d 2731 . . . 4 (𝑐 = 𝐶 → (Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀 ↔ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
109elrab 3650 . . 3 (𝐶 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝐶 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
116, 10sylib 218 . 2 (𝜑 → (𝐶 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
1211simprd 495 1 (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  wss 3905  cfv 6486  (class class class)co 7353  m cmap 8760  0cc0 11028  cn 12146  0cn0 12402  cz 12489  ..^cfzo 13575  Σcsu 15611  reprcrepr 34575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-neg 11368  df-nn 12147  df-z 12490  df-seq 13927  df-sum 15612  df-repr 34576
This theorem is referenced by:  reprle  34581  reprsuc  34582  reprpmtf1o  34593  hgt750lemb  34623  tgoldbachgt  34630
  Copyright terms: Public domain W3C validator