Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprsum Structured version   Visualization version   GIF version

Theorem reprsum 32581
Description: Sums of values of the members of the representation of 𝑀 equal 𝑀. (Contributed by Thierry Arnoux, 5-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprf.c (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
Assertion
Ref Expression
reprsum (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀)
Distinct variable groups:   𝑆,𝑎   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝑀(𝑎)

Proof of Theorem reprsum
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 reprf.c . . . 4 (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
2 reprval.a . . . . 5 (𝜑𝐴 ⊆ ℕ)
3 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
4 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
52, 3, 4reprval 32578 . . . 4 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
61, 5eleqtrd 2843 . . 3 (𝜑𝐶 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
7 fveq1 6768 . . . . . 6 (𝑐 = 𝐶 → (𝑐𝑎) = (𝐶𝑎))
87sumeq2sdv 15406 . . . . 5 (𝑐 = 𝐶 → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎))
98eqeq1d 2742 . . . 4 (𝑐 = 𝐶 → (Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀 ↔ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
109elrab 3626 . . 3 (𝐶 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝐶 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
116, 10sylib 217 . 2 (𝜑 → (𝐶 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
1211simprd 496 1 (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  {crab 3070  wss 3892  cfv 6431  (class class class)co 7269  m cmap 8590  0cc0 10864  cn 11965  0cn0 12225  cz 12311  ..^cfzo 13373  Σcsu 15387  reprcrepr 32576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-nn 11966  df-n0 12226  df-z 12312  df-uz 12574  df-fz 13231  df-seq 13712  df-sum 15388  df-repr 32577
This theorem is referenced by:  reprle  32582  reprsuc  32583  reprpmtf1o  32594  hgt750lemb  32624  tgoldbachgt  32631
  Copyright terms: Public domain W3C validator