Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprsum Structured version   Visualization version   GIF version

Theorem reprsum 34650
Description: Sums of values of the members of the representation of 𝑀 equal 𝑀. (Contributed by Thierry Arnoux, 5-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprf.c (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
Assertion
Ref Expression
reprsum (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀)
Distinct variable groups:   𝑆,𝑎   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝑀(𝑎)

Proof of Theorem reprsum
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 reprf.c . . . 4 (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
2 reprval.a . . . . 5 (𝜑𝐴 ⊆ ℕ)
3 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
4 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
52, 3, 4reprval 34647 . . . 4 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
61, 5eleqtrd 2837 . . 3 (𝜑𝐶 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
7 fveq1 6880 . . . . . 6 (𝑐 = 𝐶 → (𝑐𝑎) = (𝐶𝑎))
87sumeq2sdv 15724 . . . . 5 (𝑐 = 𝐶 → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎))
98eqeq1d 2738 . . . 4 (𝑐 = 𝐶 → (Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀 ↔ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
109elrab 3676 . . 3 (𝐶 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝐶 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
116, 10sylib 218 . 2 (𝜑 → (𝐶 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
1211simprd 495 1 (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  wss 3931  cfv 6536  (class class class)co 7410  m cmap 8845  0cc0 11134  cn 12245  0cn0 12506  cz 12593  ..^cfzo 13676  Σcsu 15707  reprcrepr 34645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-neg 11474  df-nn 12246  df-z 12594  df-seq 14025  df-sum 15708  df-repr 34646
This theorem is referenced by:  reprle  34651  reprsuc  34652  reprpmtf1o  34663  hgt750lemb  34693  tgoldbachgt  34700
  Copyright terms: Public domain W3C validator