| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reprsum | Structured version Visualization version GIF version | ||
| Description: Sums of values of the members of the representation of 𝑀 equal 𝑀. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| reprf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) |
| Ref | Expression |
|---|---|
| reprsum | ⊢ (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reprf.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) | |
| 2 | reprval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 3 | reprval.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | reprval.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 5 | 2, 3, 4 | reprval 34577 | . . . 4 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 6 | 1, 5 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 7 | fveq1 6825 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑐‘𝑎) = (𝐶‘𝑎)) | |
| 8 | 7 | sumeq2sdv 15628 | . . . . 5 ⊢ (𝑐 = 𝐶 → Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎)) |
| 9 | 8 | eqeq1d 2731 | . . . 4 ⊢ (𝑐 = 𝐶 → (Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀 ↔ Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀)) |
| 10 | 9 | elrab 3650 | . . 3 ⊢ (𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ↔ (𝐶 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀)) |
| 11 | 6, 10 | sylib 218 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀)) |
| 12 | 11 | simprd 495 | 1 ⊢ (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 0cc0 11028 ℕcn 12146 ℕ0cn0 12402 ℤcz 12489 ..^cfzo 13575 Σcsu 15611 reprcrepr 34575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-neg 11368 df-nn 12147 df-z 12490 df-seq 13927 df-sum 15612 df-repr 34576 |
| This theorem is referenced by: reprle 34581 reprsuc 34582 reprpmtf1o 34593 hgt750lemb 34623 tgoldbachgt 34630 |
| Copyright terms: Public domain | W3C validator |