Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprsum Structured version   Visualization version   GIF version

Theorem reprsum 34629
Description: Sums of values of the members of the representation of 𝑀 equal 𝑀. (Contributed by Thierry Arnoux, 5-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprf.c (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
Assertion
Ref Expression
reprsum (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀)
Distinct variable groups:   𝑆,𝑎   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝑀(𝑎)

Proof of Theorem reprsum
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 reprf.c . . . 4 (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
2 reprval.a . . . . 5 (𝜑𝐴 ⊆ ℕ)
3 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
4 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
52, 3, 4reprval 34626 . . . 4 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
61, 5eleqtrd 2842 . . 3 (𝜑𝐶 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
7 fveq1 6904 . . . . . 6 (𝑐 = 𝐶 → (𝑐𝑎) = (𝐶𝑎))
87sumeq2sdv 15740 . . . . 5 (𝑐 = 𝐶 → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎))
98eqeq1d 2738 . . . 4 (𝑐 = 𝐶 → (Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀 ↔ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
109elrab 3691 . . 3 (𝐶 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝐶 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
116, 10sylib 218 . 2 (𝜑 → (𝐶 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀))
1211simprd 495 1 (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3435  wss 3950  cfv 6560  (class class class)co 7432  m cmap 8867  0cc0 11156  cn 12267  0cn0 12528  cz 12615  ..^cfzo 13695  Σcsu 15723  reprcrepr 34624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-addcl 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-neg 11496  df-nn 12268  df-z 12616  df-seq 14044  df-sum 15724  df-repr 34625
This theorem is referenced by:  reprle  34630  reprsuc  34631  reprpmtf1o  34642  hgt750lemb  34672  tgoldbachgt  34679
  Copyright terms: Public domain W3C validator