| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reprsum | Structured version Visualization version GIF version | ||
| Description: Sums of values of the members of the representation of 𝑀 equal 𝑀. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| reprf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) |
| Ref | Expression |
|---|---|
| reprsum | ⊢ (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reprf.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) | |
| 2 | reprval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 3 | reprval.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | reprval.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 5 | 2, 3, 4 | reprval 34608 | . . . 4 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 6 | 1, 5 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 7 | fveq1 6860 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑐‘𝑎) = (𝐶‘𝑎)) | |
| 8 | 7 | sumeq2sdv 15676 | . . . . 5 ⊢ (𝑐 = 𝐶 → Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎)) |
| 9 | 8 | eqeq1d 2732 | . . . 4 ⊢ (𝑐 = 𝐶 → (Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀 ↔ Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀)) |
| 10 | 9 | elrab 3662 | . . 3 ⊢ (𝐶 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ↔ (𝐶 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀)) |
| 11 | 6, 10 | sylib 218 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀)) |
| 12 | 11 | simprd 495 | 1 ⊢ (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 ..^cfzo 13622 Σcsu 15659 reprcrepr 34606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-neg 11415 df-nn 12194 df-z 12537 df-seq 13974 df-sum 15660 df-repr 34607 |
| This theorem is referenced by: reprle 34612 reprsuc 34613 reprpmtf1o 34624 hgt750lemb 34654 tgoldbachgt 34661 |
| Copyright terms: Public domain | W3C validator |