Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprle Structured version   Visualization version   GIF version

Theorem reprle 31889
Description: Upper bound to the terms in the representations of 𝑀 as the sum of 𝑆 nonnegative integers from set 𝐴. (Contributed by Thierry Arnoux, 27-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprf.c (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
reprle.x (𝜑𝑋 ∈ (0..^𝑆))
Assertion
Ref Expression
reprle (𝜑 → (𝐶𝑋) ≤ 𝑀)

Proof of Theorem reprle
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6673 . 2 (𝑎 = 𝑋 → (𝐶𝑎) = (𝐶𝑋))
2 fzofi 13345 . . 3 (0..^𝑆) ∈ Fin
32a1i 11 . 2 (𝜑 → (0..^𝑆) ∈ Fin)
4 reprval.a . . 3 (𝜑𝐴 ⊆ ℕ)
5 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
6 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
7 reprf.c . . 3 (𝜑𝐶 ∈ (𝐴(repr‘𝑆)𝑀))
84, 5, 6, 7reprsum 31888 . 2 (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶𝑎) = 𝑀)
94adantr 483 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
104, 5, 6, 7reprf 31887 . . . . 5 (𝜑𝐶:(0..^𝑆)⟶𝐴)
1110ffvelrnda 6854 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐶𝑎) ∈ 𝐴)
129, 11sseldd 3971 . . 3 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐶𝑎) ∈ ℕ)
1312nnrpd 12432 . 2 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐶𝑎) ∈ ℝ+)
14 reprle.x . 2 (𝜑𝑋 ∈ (0..^𝑆))
151, 3, 8, 13, 14fsumub 30548 1 (𝜑 → (𝐶𝑋) ≤ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2113  wss 3939   class class class wbr 5069  cfv 6358  (class class class)co 7159  Fincfn 8512  0cc0 10540  cle 10679  cn 11641  0cn0 11900  cz 11984  ..^cfzo 13036  reprcrepr 31883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-repr 31884
This theorem is referenced by:  hgt750lemb  31931
  Copyright terms: Public domain W3C validator