MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rsp0 Structured version   Visualization version   GIF version

Theorem rsp0 21124
Description: The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
rspcl.k 𝐾 = (RSpan‘𝑅)
rsp0.z 0 = (0g𝑅)
Assertion
Ref Expression
rsp0 (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 })

Proof of Theorem rsp0
StepHypRef Expression
1 rlmlmod 21086 . 2 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
2 rsp0.z . . . 4 0 = (0g𝑅)
3 rlm0 21078 . . . 4 (0g𝑅) = (0g‘(ringLMod‘𝑅))
42, 3eqtri 2752 . . 3 0 = (0g‘(ringLMod‘𝑅))
5 rspcl.k . . . 4 𝐾 = (RSpan‘𝑅)
6 rspval 21097 . . . 4 (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))
75, 6eqtri 2752 . . 3 𝐾 = (LSpan‘(ringLMod‘𝑅))
84, 7lspsn0 20890 . 2 ((ringLMod‘𝑅) ∈ LMod → (𝐾‘{ 0 }) = { 0 })
91, 8syl 17 1 (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4585  cfv 6499  0gc0g 17378  Ringcrg 20118  LModclmod 20742  LSpanclspn 20853  ringLModcrglmod 21055  RSpancrsp 21093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-subg 19031  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrg 20455  df-lmod 20744  df-lss 20814  df-lsp 20854  df-sra 21056  df-rgmod 21057  df-rsp 21095
This theorem is referenced by:  lpi0  21212  pidlnzb  33366  pidufd  33487
  Copyright terms: Public domain W3C validator