![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspsnel | Structured version Visualization version GIF version |
Description: Membership in a principal ideal. Analogous to lspsnel 20606. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
Ref | Expression |
---|---|
rspsnel.1 | โข ๐ต = (Baseโ๐ ) |
rspsnel.2 | โข ยท = (.rโ๐ ) |
rspsnel.3 | โข ๐พ = (RSpanโ๐ ) |
Ref | Expression |
---|---|
rspsnel | โข ((๐ โ Ring โง ๐ โ ๐ต) โ (๐ผ โ (๐พโ{๐}) โ โ๐ฅ โ ๐ต ๐ผ = (๐ฅ ยท ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmlmod 20819 | . . 3 โข (๐ โ Ring โ (ringLModโ๐ ) โ LMod) | |
2 | simpr 485 | . . . 4 โข ((๐ โ Ring โง ๐ โ ๐ต) โ ๐ โ ๐ต) | |
3 | rspsnel.1 | . . . 4 โข ๐ต = (Baseโ๐ ) | |
4 | 2, 3 | eleqtrdi 2843 | . . 3 โข ((๐ โ Ring โง ๐ โ ๐ต) โ ๐ โ (Baseโ๐ )) |
5 | eqid 2732 | . . . 4 โข (Scalarโ(ringLModโ๐ )) = (Scalarโ(ringLModโ๐ )) | |
6 | eqid 2732 | . . . 4 โข (Baseโ(Scalarโ(ringLModโ๐ ))) = (Baseโ(Scalarโ(ringLModโ๐ ))) | |
7 | rlmbas 20809 | . . . 4 โข (Baseโ๐ ) = (Baseโ(ringLModโ๐ )) | |
8 | rspsnel.2 | . . . . 5 โข ยท = (.rโ๐ ) | |
9 | rlmvsca 20816 | . . . . 5 โข (.rโ๐ ) = ( ยท๐ โ(ringLModโ๐ )) | |
10 | 8, 9 | eqtri 2760 | . . . 4 โข ยท = ( ยท๐ โ(ringLModโ๐ )) |
11 | rspsnel.3 | . . . . 5 โข ๐พ = (RSpanโ๐ ) | |
12 | rspval 20807 | . . . . 5 โข (RSpanโ๐ ) = (LSpanโ(ringLModโ๐ )) | |
13 | 11, 12 | eqtri 2760 | . . . 4 โข ๐พ = (LSpanโ(ringLModโ๐ )) |
14 | 5, 6, 7, 10, 13 | lspsnel 20606 | . . 3 โข (((ringLModโ๐ ) โ LMod โง ๐ โ (Baseโ๐ )) โ (๐ผ โ (๐พโ{๐}) โ โ๐ฅ โ (Baseโ(Scalarโ(ringLModโ๐ )))๐ผ = (๐ฅ ยท ๐))) |
15 | 1, 4, 14 | syl2an2r 683 | . 2 โข ((๐ โ Ring โง ๐ โ ๐ต) โ (๐ผ โ (๐พโ{๐}) โ โ๐ฅ โ (Baseโ(Scalarโ(ringLModโ๐ )))๐ผ = (๐ฅ ยท ๐))) |
16 | rlmsca 20814 | . . . . . 6 โข (๐ โ Ring โ ๐ = (Scalarโ(ringLModโ๐ ))) | |
17 | 16 | adantr 481 | . . . . 5 โข ((๐ โ Ring โง ๐ โ ๐ต) โ ๐ = (Scalarโ(ringLModโ๐ ))) |
18 | 17 | fveq2d 6892 | . . . 4 โข ((๐ โ Ring โง ๐ โ ๐ต) โ (Baseโ๐ ) = (Baseโ(Scalarโ(ringLModโ๐ )))) |
19 | 3, 18 | eqtr2id 2785 | . . 3 โข ((๐ โ Ring โง ๐ โ ๐ต) โ (Baseโ(Scalarโ(ringLModโ๐ ))) = ๐ต) |
20 | 19 | rexeqdv 3326 | . 2 โข ((๐ โ Ring โง ๐ โ ๐ต) โ (โ๐ฅ โ (Baseโ(Scalarโ(ringLModโ๐ )))๐ผ = (๐ฅ ยท ๐) โ โ๐ฅ โ ๐ต ๐ผ = (๐ฅ ยท ๐))) |
21 | 15, 20 | bitrd 278 | 1 โข ((๐ โ Ring โง ๐ โ ๐ต) โ (๐ผ โ (๐พโ{๐}) โ โ๐ฅ โ ๐ต ๐ผ = (๐ฅ ยท ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 396 = wceq 1541 โ wcel 2106 โwrex 3070 {csn 4627 โcfv 6540 (class class class)co 7405 Basecbs 17140 .rcmulr 17194 Scalarcsca 17196 ยท๐ cvsca 17197 Ringcrg 20049 LModclmod 20463 LSpanclspn 20574 ringLModcrglmod 20774 RSpancrsp 20776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-mgp 19982 df-ur 19999 df-ring 20051 df-subrg 20353 df-lmod 20465 df-lss 20535 df-lsp 20575 df-sra 20777 df-rgmod 20778 df-rsp 20780 |
This theorem is referenced by: dvdsrspss 32479 lsmsnpridl 32496 unitpidl1 32530 drngidl 32539 isprmidlc 32554 mxidlirredi 32575 mxidlirred 32576 |
Copyright terms: Public domain | W3C validator |