![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspsnel | Structured version Visualization version GIF version |
Description: Membership in a principal ideal. Analogous to lspsnel 20904. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
Ref | Expression |
---|---|
rspsnel.1 | ⊢ 𝐵 = (Base‘𝑅) |
rspsnel.2 | ⊢ · = (.r‘𝑅) |
rspsnel.3 | ⊢ 𝐾 = (RSpan‘𝑅) |
Ref | Expression |
---|---|
rspsnel | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ 𝐵 𝐼 = (𝑥 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmlmod 21113 | . . 3 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
2 | simpr 483 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
3 | rspsnel.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 2, 3 | eleqtrdi 2835 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑅)) |
5 | eqid 2725 | . . . 4 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
6 | eqid 2725 | . . . 4 ⊢ (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅))) | |
7 | rlmbas 21103 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
8 | rspsnel.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
9 | rlmvsca 21110 | . . . . 5 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
10 | 8, 9 | eqtri 2753 | . . . 4 ⊢ · = ( ·𝑠 ‘(ringLMod‘𝑅)) |
11 | rspsnel.3 | . . . . 5 ⊢ 𝐾 = (RSpan‘𝑅) | |
12 | rspval 21124 | . . . . 5 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
13 | 11, 12 | eqtri 2753 | . . . 4 ⊢ 𝐾 = (LSpan‘(ringLMod‘𝑅)) |
14 | 5, 6, 7, 10, 13 | lspsnel 20904 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝑋 ∈ (Base‘𝑅)) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝐼 = (𝑥 · 𝑋))) |
15 | 1, 4, 14 | syl2an2r 683 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝐼 = (𝑥 · 𝑋))) |
16 | rlmsca 21108 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
17 | 16 | adantr 479 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
18 | 17 | fveq2d 6900 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
19 | 3, 18 | eqtr2id 2778 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (Base‘(Scalar‘(ringLMod‘𝑅))) = 𝐵) |
20 | 19 | rexeqdv 3315 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (∃𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝐼 = (𝑥 · 𝑋) ↔ ∃𝑥 ∈ 𝐵 𝐼 = (𝑥 · 𝑋))) |
21 | 15, 20 | bitrd 278 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ 𝐵 𝐼 = (𝑥 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 {csn 4630 ‘cfv 6549 (class class class)co 7419 Basecbs 17188 .rcmulr 17242 Scalarcsca 17244 ·𝑠 cvsca 17245 Ringcrg 20190 LModclmod 20760 LSpanclspn 20872 ringLModcrglmod 21074 RSpancrsp 21120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17189 df-ress 17218 df-plusg 17254 df-mulr 17255 df-sca 17257 df-vsca 17258 df-ip 17259 df-0g 17431 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-grp 18906 df-minusg 18907 df-sbg 18908 df-subg 19091 df-mgp 20092 df-ur 20139 df-ring 20192 df-subrg 20525 df-lmod 20762 df-lss 20833 df-lsp 20873 df-sra 21075 df-rgmod 21076 df-rsp 21122 |
This theorem is referenced by: dvdsrspss 33204 lsmsnpridl 33215 unitpidl1 33241 drngidl 33250 isprmidlc 33264 ssdifidlprm 33275 mxidlirredi 33288 mxidlirred 33289 1arithufdlem4 33364 |
Copyright terms: Public domain | W3C validator |