Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspsnel | Structured version Visualization version GIF version |
Description: Membership in a principal ideal. Analogous to lspsnel 20073. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
Ref | Expression |
---|---|
rspsnel.1 | ⊢ 𝐵 = (Base‘𝑅) |
rspsnel.2 | ⊢ · = (.r‘𝑅) |
rspsnel.3 | ⊢ 𝐾 = (RSpan‘𝑅) |
Ref | Expression |
---|---|
rspsnel | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ 𝐵 𝐼 = (𝑥 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmlmod 20275 | . . 3 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
2 | simpr 488 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
3 | rspsnel.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 2, 3 | eleqtrdi 2850 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑅)) |
5 | eqid 2739 | . . . 4 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
6 | eqid 2739 | . . . 4 ⊢ (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅))) | |
7 | rlmbas 20265 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
8 | rspsnel.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
9 | rlmvsca 20272 | . . . . 5 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
10 | 8, 9 | eqtri 2767 | . . . 4 ⊢ · = ( ·𝑠 ‘(ringLMod‘𝑅)) |
11 | rspsnel.3 | . . . . 5 ⊢ 𝐾 = (RSpan‘𝑅) | |
12 | rspval 20263 | . . . . 5 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
13 | 11, 12 | eqtri 2767 | . . . 4 ⊢ 𝐾 = (LSpan‘(ringLMod‘𝑅)) |
14 | 5, 6, 7, 10, 13 | lspsnel 20073 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝑋 ∈ (Base‘𝑅)) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝐼 = (𝑥 · 𝑋))) |
15 | 1, 4, 14 | syl2an2r 685 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝐼 = (𝑥 · 𝑋))) |
16 | rlmsca 20270 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
17 | 16 | adantr 484 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
18 | 17 | fveq2d 6743 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
19 | 3, 18 | eqtr2id 2793 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (Base‘(Scalar‘(ringLMod‘𝑅))) = 𝐵) |
20 | 19 | rexeqdv 3341 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (∃𝑥 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝐼 = (𝑥 · 𝑋) ↔ ∃𝑥 ∈ 𝐵 𝐼 = (𝑥 · 𝑋))) |
21 | 15, 20 | bitrd 282 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥 ∈ 𝐵 𝐼 = (𝑥 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∃wrex 3065 {csn 4558 ‘cfv 6401 (class class class)co 7235 Basecbs 16793 .rcmulr 16836 Scalarcsca 16838 ·𝑠 cvsca 16839 Ringcrg 19595 LModclmod 19932 LSpanclspn 20041 ringLModcrglmod 20239 RSpancrsp 20241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-1st 7783 df-2nd 7784 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-nn 11861 df-2 11923 df-3 11924 df-4 11925 df-5 11926 df-6 11927 df-7 11928 df-8 11929 df-sets 16750 df-slot 16768 df-ndx 16778 df-base 16794 df-ress 16818 df-plusg 16848 df-mulr 16849 df-sca 16851 df-vsca 16852 df-ip 16853 df-0g 16979 df-mgm 18147 df-sgrp 18196 df-mnd 18207 df-grp 18401 df-minusg 18402 df-sbg 18403 df-subg 18573 df-mgp 19538 df-ur 19550 df-ring 19597 df-subrg 19831 df-lmod 19934 df-lss 20002 df-lsp 20042 df-sra 20242 df-rgmod 20243 df-rsp 20245 |
This theorem is referenced by: lsmsnpridl 31332 isprmidlc 31369 |
Copyright terms: Public domain | W3C validator |