![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsub2i | Structured version Visualization version GIF version |
Description: Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shsub2i | ⊢ 𝐴 ⊆ (𝐵 +ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.2 | . . 3 ⊢ 𝐵 ∈ Sℋ | |
2 | shincl.1 | . . 3 ⊢ 𝐴 ∈ Sℋ | |
3 | 1, 2 | shsel2i 28797 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 +ℋ 𝐴)) |
4 | 3 | ssriv 3824 | 1 ⊢ 𝐴 ⊆ (𝐵 +ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3791 (class class class)co 6922 Sℋ csh 28357 +ℋ cph 28360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-hilex 28428 ax-hfvadd 28429 ax-hvcom 28430 ax-hvass 28431 ax-hv0cl 28432 ax-hvaddid 28433 ax-hfvmul 28434 ax-hvmulid 28435 ax-hvdistr2 28438 ax-hvmul0 28439 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 df-neg 10609 df-grpo 27920 df-ablo 27972 df-hvsub 28400 df-sh 28636 df-shs 28739 |
This theorem is referenced by: shslubi 28816 shlesb1i 28817 shs00i 28881 sumdmdlem2 29850 |
Copyright terms: Public domain | W3C validator |