MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttglemOLD Structured version   Visualization version   GIF version

Theorem ttglemOLD 27528
Description: Obsolete version of ttglem 27527 as of 29-Oct-2024. Lemma for ttgbas 27529 and ttgvsca 27534. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttglemOLD.2 𝐸 = Slot 𝑁
ttglemOLD.3 𝑁 ∈ ℕ
ttglemOLD.4 𝑁 < 16
Assertion
Ref Expression
ttglemOLD (𝐸𝐻) = (𝐸𝐺)

Proof of Theorem ttglemOLD
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttglemOLD.2 . . . . . 6 𝐸 = Slot 𝑁
2 ttglemOLD.3 . . . . . 6 𝑁 ∈ ℕ
31, 2ndxid 16995 . . . . 5 𝐸 = Slot (𝐸‘ndx)
42nnrei 12083 . . . . . . 7 𝑁 ∈ ℝ
5 ttglemOLD.4 . . . . . . 7 𝑁 < 16
64, 5ltneii 11189 . . . . . 6 𝑁16
71, 2ndxarg 16994 . . . . . . 7 (𝐸‘ndx) = 𝑁
8 itvndx 27087 . . . . . . 7 (Itv‘ndx) = 16
97, 8neeq12i 3007 . . . . . 6 ((𝐸‘ndx) ≠ (Itv‘ndx) ↔ 𝑁16)
106, 9mpbir 230 . . . . 5 (𝐸‘ndx) ≠ (Itv‘ndx)
113, 10setsnid 17007 . . . 4 (𝐸𝐻) = (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩))
12 1nn0 12350 . . . . . . . . 9 1 ∈ ℕ0
13 6nn0 12355 . . . . . . . . 9 6 ∈ ℕ0
14 7nn 12166 . . . . . . . . 9 7 ∈ ℕ
15 6lt7 12260 . . . . . . . . 9 6 < 7
1612, 13, 14, 15declt 12566 . . . . . . . 8 16 < 17
17 6nn 12163 . . . . . . . . . . 11 6 ∈ ℕ
1812, 17decnncl 12558 . . . . . . . . . 10 16 ∈ ℕ
1918nnrei 12083 . . . . . . . . 9 16 ∈ ℝ
2012, 14decnncl 12558 . . . . . . . . . 10 17 ∈ ℕ
2120nnrei 12083 . . . . . . . . 9 17 ∈ ℝ
224, 19, 21lttri 11202 . . . . . . . 8 ((𝑁 < 16 ∧ 16 < 17) → 𝑁 < 17)
235, 16, 22mp2an 689 . . . . . . 7 𝑁 < 17
244, 23ltneii 11189 . . . . . 6 𝑁17
25 lngndx 27088 . . . . . . 7 (LineG‘ndx) = 17
267, 25neeq12i 3007 . . . . . 6 ((𝐸‘ndx) ≠ (LineG‘ndx) ↔ 𝑁17)
2724, 26mpbir 230 . . . . 5 (𝐸‘ndx) ≠ (LineG‘ndx)
283, 27setsnid 17007 . . . 4 (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩)) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
2911, 28eqtri 2764 . . 3 (𝐸𝐻) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
30 ttgval.n . . . . . 6 𝐺 = (toTG‘𝐻)
31 eqid 2736 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
32 eqid 2736 . . . . . 6 (-g𝐻) = (-g𝐻)
33 eqid 2736 . . . . . 6 ( ·𝑠𝐻) = ( ·𝑠𝐻)
34 eqid 2736 . . . . . 6 (Itv‘𝐺) = (Itv‘𝐺)
3530, 31, 32, 33, 34ttgval 27525 . . . . 5 (𝐻 ∈ V → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩) ∧ (Itv‘𝐺) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})))
3635simpld 495 . . . 4 (𝐻 ∈ V → 𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
3736fveq2d 6829 . . 3 (𝐻 ∈ V → (𝐸𝐺) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩)))
3829, 37eqtr4id 2795 . 2 (𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
391str0 16987 . . 3 ∅ = (𝐸‘∅)
40 fvprc 6817 . . 3 𝐻 ∈ V → (𝐸𝐻) = ∅)
41 fvprc 6817 . . . . 5 𝐻 ∈ V → (toTG‘𝐻) = ∅)
4230, 41eqtrid 2788 . . . 4 𝐻 ∈ V → 𝐺 = ∅)
4342fveq2d 6829 . . 3 𝐻 ∈ V → (𝐸𝐺) = (𝐸‘∅))
4439, 40, 433eqtr4a 2802 . 2 𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
4538, 44pm2.61i 182 1 (𝐸𝐻) = (𝐸𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3o 1085   = wceq 1540  wcel 2105  wne 2940  wrex 3070  {crab 3403  Vcvv 3441  c0 4269  cop 4579   class class class wbr 5092  cfv 6479  (class class class)co 7337  cmpo 7339  0cc0 10972  1c1 10973   < clt 11110  cn 12074  6c6 12133  7c7 12134  cdc 12538  [,]cicc 13183   sSet csts 16961  Slot cslot 16979  ndxcnx 16991  Basecbs 17009   ·𝑠 cvsca 17063  -gcsg 18675  Itvcitv 27083  LineGclng 27084  toTGcttg 27523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-dec 12539  df-sets 16962  df-slot 16980  df-ndx 16992  df-itv 27085  df-lng 27086  df-ttg 27524
This theorem is referenced by:  ttgbasOLD  27530  ttgplusgOLD  27532  ttgvscaOLD  27535  ttgdsOLD  27537
  Copyright terms: Public domain W3C validator