MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttglemOLD Structured version   Visualization version   GIF version

Theorem ttglemOLD 27239
Description: Obsolete version of ttglem 27238 as of 29-Oct-2024. Lemma for ttgbas 27240 and ttgvsca 27245. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttglemOLD.2 𝐸 = Slot 𝑁
ttglemOLD.3 𝑁 ∈ ℕ
ttglemOLD.4 𝑁 < 16
Assertion
Ref Expression
ttglemOLD (𝐸𝐻) = (𝐸𝐺)

Proof of Theorem ttglemOLD
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttglemOLD.2 . . . . . 6 𝐸 = Slot 𝑁
2 ttglemOLD.3 . . . . . 6 𝑁 ∈ ℕ
31, 2ndxid 16898 . . . . 5 𝐸 = Slot (𝐸‘ndx)
42nnrei 11982 . . . . . . 7 𝑁 ∈ ℝ
5 ttglemOLD.4 . . . . . . 7 𝑁 < 16
64, 5ltneii 11088 . . . . . 6 𝑁16
71, 2ndxarg 16897 . . . . . . 7 (𝐸‘ndx) = 𝑁
8 itvndx 26798 . . . . . . 7 (Itv‘ndx) = 16
97, 8neeq12i 3010 . . . . . 6 ((𝐸‘ndx) ≠ (Itv‘ndx) ↔ 𝑁16)
106, 9mpbir 230 . . . . 5 (𝐸‘ndx) ≠ (Itv‘ndx)
113, 10setsnid 16910 . . . 4 (𝐸𝐻) = (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩))
12 1nn0 12249 . . . . . . . . 9 1 ∈ ℕ0
13 6nn0 12254 . . . . . . . . 9 6 ∈ ℕ0
14 7nn 12065 . . . . . . . . 9 7 ∈ ℕ
15 6lt7 12159 . . . . . . . . 9 6 < 7
1612, 13, 14, 15declt 12465 . . . . . . . 8 16 < 17
17 6nn 12062 . . . . . . . . . . 11 6 ∈ ℕ
1812, 17decnncl 12457 . . . . . . . . . 10 16 ∈ ℕ
1918nnrei 11982 . . . . . . . . 9 16 ∈ ℝ
2012, 14decnncl 12457 . . . . . . . . . 10 17 ∈ ℕ
2120nnrei 11982 . . . . . . . . 9 17 ∈ ℝ
224, 19, 21lttri 11101 . . . . . . . 8 ((𝑁 < 16 ∧ 16 < 17) → 𝑁 < 17)
235, 16, 22mp2an 689 . . . . . . 7 𝑁 < 17
244, 23ltneii 11088 . . . . . 6 𝑁17
25 lngndx 26799 . . . . . . 7 (LineG‘ndx) = 17
267, 25neeq12i 3010 . . . . . 6 ((𝐸‘ndx) ≠ (LineG‘ndx) ↔ 𝑁17)
2724, 26mpbir 230 . . . . 5 (𝐸‘ndx) ≠ (LineG‘ndx)
283, 27setsnid 16910 . . . 4 (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩)) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
2911, 28eqtri 2766 . . 3 (𝐸𝐻) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
30 ttgval.n . . . . . 6 𝐺 = (toTG‘𝐻)
31 eqid 2738 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
32 eqid 2738 . . . . . 6 (-g𝐻) = (-g𝐻)
33 eqid 2738 . . . . . 6 ( ·𝑠𝐻) = ( ·𝑠𝐻)
34 eqid 2738 . . . . . 6 (Itv‘𝐺) = (Itv‘𝐺)
3530, 31, 32, 33, 34ttgval 27236 . . . . 5 (𝐻 ∈ V → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩) ∧ (Itv‘𝐺) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})))
3635simpld 495 . . . 4 (𝐻 ∈ V → 𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
3736fveq2d 6778 . . 3 (𝐻 ∈ V → (𝐸𝐺) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩)))
3829, 37eqtr4id 2797 . 2 (𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
391str0 16890 . . 3 ∅ = (𝐸‘∅)
40 fvprc 6766 . . 3 𝐻 ∈ V → (𝐸𝐻) = ∅)
41 fvprc 6766 . . . . 5 𝐻 ∈ V → (toTG‘𝐻) = ∅)
4230, 41eqtrid 2790 . . . 4 𝐻 ∈ V → 𝐺 = ∅)
4342fveq2d 6778 . . 3 𝐻 ∈ V → (𝐸𝐺) = (𝐸‘∅))
4439, 40, 433eqtr4a 2804 . 2 𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
4538, 44pm2.61i 182 1 (𝐸𝐻) = (𝐸𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3o 1085   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  c0 4256  cop 4567   class class class wbr 5074  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871  1c1 10872   < clt 11009  cn 11973  6c6 12032  7c7 12033  cdc 12437  [,]cicc 13082   sSet csts 16864  Slot cslot 16882  ndxcnx 16894  Basecbs 16912   ·𝑠 cvsca 16966  -gcsg 18579  Itvcitv 26794  LineGclng 26795  toTGcttg 27234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-dec 12438  df-sets 16865  df-slot 16883  df-ndx 16895  df-itv 26796  df-lng 26797  df-ttg 27235
This theorem is referenced by:  ttgbasOLD  27241  ttgplusgOLD  27243  ttgvscaOLD  27246  ttgdsOLD  27248
  Copyright terms: Public domain W3C validator