| Step | Hyp | Ref
| Expression |
| 1 | | ttglemOLD.2 |
. . . . . 6
⊢ 𝐸 = Slot 𝑁 |
| 2 | | ttglemOLD.3 |
. . . . . 6
⊢ 𝑁 ∈ ℕ |
| 3 | 1, 2 | ndxid 17234 |
. . . . 5
⊢ 𝐸 = Slot (𝐸‘ndx) |
| 4 | 2 | nnrei 12275 |
. . . . . . 7
⊢ 𝑁 ∈ ℝ |
| 5 | | ttglemOLD.4 |
. . . . . . 7
⊢ 𝑁 < ;16 |
| 6 | 4, 5 | ltneii 11374 |
. . . . . 6
⊢ 𝑁 ≠ ;16 |
| 7 | 1, 2 | ndxarg 17233 |
. . . . . . 7
⊢ (𝐸‘ndx) = 𝑁 |
| 8 | | itvndx 28445 |
. . . . . . 7
⊢
(Itv‘ndx) = ;16 |
| 9 | 7, 8 | neeq12i 3007 |
. . . . . 6
⊢ ((𝐸‘ndx) ≠ (Itv‘ndx)
↔ 𝑁 ≠ ;16) |
| 10 | 6, 9 | mpbir 231 |
. . . . 5
⊢ (𝐸‘ndx) ≠
(Itv‘ndx) |
| 11 | 3, 10 | setsnid 17245 |
. . . 4
⊢ (𝐸‘𝐻) = (𝐸‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠
‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉)) |
| 12 | | 1nn0 12542 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
| 13 | | 6nn0 12547 |
. . . . . . . . 9
⊢ 6 ∈
ℕ0 |
| 14 | | 7nn 12358 |
. . . . . . . . 9
⊢ 7 ∈
ℕ |
| 15 | | 6lt7 12452 |
. . . . . . . . 9
⊢ 6 <
7 |
| 16 | 12, 13, 14, 15 | declt 12761 |
. . . . . . . 8
⊢ ;16 < ;17 |
| 17 | | 6nn 12355 |
. . . . . . . . . . 11
⊢ 6 ∈
ℕ |
| 18 | 12, 17 | decnncl 12753 |
. . . . . . . . . 10
⊢ ;16 ∈ ℕ |
| 19 | 18 | nnrei 12275 |
. . . . . . . . 9
⊢ ;16 ∈ ℝ |
| 20 | 12, 14 | decnncl 12753 |
. . . . . . . . . 10
⊢ ;17 ∈ ℕ |
| 21 | 20 | nnrei 12275 |
. . . . . . . . 9
⊢ ;17 ∈ ℝ |
| 22 | 4, 19, 21 | lttri 11387 |
. . . . . . . 8
⊢ ((𝑁 < ;16 ∧ ;16 < ;17) → 𝑁 < ;17) |
| 23 | 5, 16, 22 | mp2an 692 |
. . . . . . 7
⊢ 𝑁 < ;17 |
| 24 | 4, 23 | ltneii 11374 |
. . . . . 6
⊢ 𝑁 ≠ ;17 |
| 25 | | lngndx 28446 |
. . . . . . 7
⊢
(LineG‘ndx) = ;17 |
| 26 | 7, 25 | neeq12i 3007 |
. . . . . 6
⊢ ((𝐸‘ndx) ≠
(LineG‘ndx) ↔ 𝑁
≠ ;17) |
| 27 | 24, 26 | mpbir 231 |
. . . . 5
⊢ (𝐸‘ndx) ≠
(LineG‘ndx) |
| 28 | 3, 27 | setsnid 17245 |
. . . 4
⊢ (𝐸‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠
‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉)) = (𝐸‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠
‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉)) |
| 29 | 11, 28 | eqtri 2765 |
. . 3
⊢ (𝐸‘𝐻) = (𝐸‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠
‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉)) |
| 30 | | ttgval.n |
. . . . . 6
⊢ 𝐺 = (toTG‘𝐻) |
| 31 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 32 | | eqid 2737 |
. . . . . 6
⊢
(-g‘𝐻) = (-g‘𝐻) |
| 33 | | eqid 2737 |
. . . . . 6
⊢ (
·𝑠 ‘𝐻) = ( ·𝑠
‘𝐻) |
| 34 | | eqid 2737 |
. . . . . 6
⊢
(Itv‘𝐺) =
(Itv‘𝐺) |
| 35 | 30, 31, 32, 33, 34 | ttgval 28883 |
. . . . 5
⊢ (𝐻 ∈ V → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠
‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉) ∧ (Itv‘𝐺) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠
‘𝐻)(𝑦(-g‘𝐻)𝑥))}))) |
| 36 | 35 | simpld 494 |
. . . 4
⊢ (𝐻 ∈ V → 𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠
‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉)) |
| 37 | 36 | fveq2d 6910 |
. . 3
⊢ (𝐻 ∈ V → (𝐸‘𝐺) = (𝐸‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝐻)𝑥) = (𝑘( ·𝑠
‘𝐻)(𝑦(-g‘𝐻)𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})〉))) |
| 38 | 29, 37 | eqtr4id 2796 |
. 2
⊢ (𝐻 ∈ V → (𝐸‘𝐻) = (𝐸‘𝐺)) |
| 39 | 1 | str0 17226 |
. . 3
⊢ ∅ =
(𝐸‘∅) |
| 40 | | fvprc 6898 |
. . 3
⊢ (¬
𝐻 ∈ V → (𝐸‘𝐻) = ∅) |
| 41 | | fvprc 6898 |
. . . . 5
⊢ (¬
𝐻 ∈ V →
(toTG‘𝐻) =
∅) |
| 42 | 30, 41 | eqtrid 2789 |
. . . 4
⊢ (¬
𝐻 ∈ V → 𝐺 = ∅) |
| 43 | 42 | fveq2d 6910 |
. . 3
⊢ (¬
𝐻 ∈ V → (𝐸‘𝐺) = (𝐸‘∅)) |
| 44 | 39, 40, 43 | 3eqtr4a 2803 |
. 2
⊢ (¬
𝐻 ∈ V → (𝐸‘𝐻) = (𝐸‘𝐺)) |
| 45 | 38, 44 | pm2.61i 182 |
1
⊢ (𝐸‘𝐻) = (𝐸‘𝐺) |