MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsind Structured version   Visualization version   GIF version

Theorem uzsind 28406
Description: Induction on the upper surreal integers that start at 𝑀. (Contributed by Scott Fenton, 25-Jul-2025.)
Hypotheses
Ref Expression
uzsind.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzsind.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzsind.3 (𝑗 = (𝑘 +s 1s ) → (𝜑𝜃))
uzsind.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzsind.5 (𝑀 ∈ ℤs𝜓)
uzsind.6 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → (𝜒𝜃))
Assertion
Ref Expression
uzsind ((𝑀 ∈ ℤs𝑁 ∈ ℤs𝑀 ≤s 𝑁) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzsind
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝑀 ∈ ℤs𝑀 ∈ ℤs)
2 zno 28383 . . . . . . . . 9 (𝑀 ∈ ℤs𝑀 No )
3 slerflex 27823 . . . . . . . . 9 (𝑀 No 𝑀 ≤s 𝑀)
42, 3syl 17 . . . . . . . 8 (𝑀 ∈ ℤs𝑀 ≤s 𝑀)
5 uzsind.5 . . . . . . . 8 (𝑀 ∈ ℤs𝜓)
61, 4, 5jca32 515 . . . . . . 7 (𝑀 ∈ ℤs → (𝑀 ∈ ℤs ∧ (𝑀 ≤s 𝑀𝜓)))
7 breq2 5152 . . . . . . . . 9 (𝑗 = 𝑀 → (𝑀 ≤s 𝑗𝑀 ≤s 𝑀))
8 uzsind.1 . . . . . . . . 9 (𝑗 = 𝑀 → (𝜑𝜓))
97, 8anbi12d 632 . . . . . . . 8 (𝑗 = 𝑀 → ((𝑀 ≤s 𝑗𝜑) ↔ (𝑀 ≤s 𝑀𝜓)))
109elrab 3695 . . . . . . 7 (𝑀 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)} ↔ (𝑀 ∈ ℤs ∧ (𝑀 ≤s 𝑀𝜓)))
116, 10sylibr 234 . . . . . 6 (𝑀 ∈ ℤs𝑀 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)})
12 simpl 482 . . . . . . . 8 ((𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))) → 𝑀 ∈ ℤs)
13 simprl 771 . . . . . . . 8 ((𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))) → 𝑘 ∈ ℤs)
14 simprrl 781 . . . . . . . 8 ((𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))) → 𝑀 ≤s 𝑘)
15 simprrr 782 . . . . . . . 8 ((𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))) → 𝜒)
16 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℤs𝑘 ∈ ℤs)
17 1zs 28392 . . . . . . . . . . . . 13 1s ∈ ℤs
1817a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℤs → 1s ∈ ℤs)
1916, 18zaddscld 28396 . . . . . . . . . . 11 (𝑘 ∈ ℤs → (𝑘 +s 1s ) ∈ ℤs)
20193ad2ant2 1133 . . . . . . . . . 10 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → (𝑘 +s 1s ) ∈ ℤs)
2120adantr 480 . . . . . . . . 9 (((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) ∧ 𝜒) → (𝑘 +s 1s ) ∈ ℤs)
2223ad2ant1 1132 . . . . . . . . . . 11 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑀 No )
2319znod 28384 . . . . . . . . . . . 12 (𝑘 ∈ ℤs → (𝑘 +s 1s ) ∈ No )
24233ad2ant2 1133 . . . . . . . . . . 11 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → (𝑘 +s 1s ) ∈ No )
25 zno 28383 . . . . . . . . . . . . 13 (𝑘 ∈ ℤs𝑘 No )
26253ad2ant2 1133 . . . . . . . . . . . 12 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑘 No )
27 simp3 1137 . . . . . . . . . . . 12 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑀 ≤s 𝑘)
2825sltp1d 28063 . . . . . . . . . . . . 13 (𝑘 ∈ ℤs𝑘 <s (𝑘 +s 1s ))
29283ad2ant2 1133 . . . . . . . . . . . 12 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑘 <s (𝑘 +s 1s ))
3022, 26, 24, 27, 29slelttrd 27821 . . . . . . . . . . 11 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑀 <s (𝑘 +s 1s ))
3122, 24, 30sltled 27829 . . . . . . . . . 10 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑀 ≤s (𝑘 +s 1s ))
3231adantr 480 . . . . . . . . 9 (((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) ∧ 𝜒) → 𝑀 ≤s (𝑘 +s 1s ))
33 uzsind.6 . . . . . . . . . 10 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → (𝜒𝜃))
3433imp 406 . . . . . . . . 9 (((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) ∧ 𝜒) → 𝜃)
3521, 32, 34jca32 515 . . . . . . . 8 (((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) ∧ 𝜒) → ((𝑘 +s 1s ) ∈ ℤs ∧ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃)))
3612, 13, 14, 15, 35syl31anc 1372 . . . . . . 7 ((𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))) → ((𝑘 +s 1s ) ∈ ℤs ∧ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃)))
37 breq2 5152 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑀 ≤s 𝑗𝑀 ≤s 𝑘))
38 uzsind.2 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝜑𝜒))
3937, 38anbi12d 632 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑀 ≤s 𝑗𝜑) ↔ (𝑀 ≤s 𝑘𝜒)))
4039elrab 3695 . . . . . . . 8 (𝑘 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)} ↔ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒)))
4140anbi2i 623 . . . . . . 7 ((𝑀 ∈ ℤs𝑘 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)}) ↔ (𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))))
42 breq2 5152 . . . . . . . . 9 (𝑗 = (𝑘 +s 1s ) → (𝑀 ≤s 𝑗𝑀 ≤s (𝑘 +s 1s )))
43 uzsind.3 . . . . . . . . 9 (𝑗 = (𝑘 +s 1s ) → (𝜑𝜃))
4442, 43anbi12d 632 . . . . . . . 8 (𝑗 = (𝑘 +s 1s ) → ((𝑀 ≤s 𝑗𝜑) ↔ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃)))
4544elrab 3695 . . . . . . 7 ((𝑘 +s 1s ) ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)} ↔ ((𝑘 +s 1s ) ∈ ℤs ∧ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃)))
4636, 41, 453imtr4i 292 . . . . . 6 ((𝑀 ∈ ℤs𝑘 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)}) → (𝑘 +s 1s ) ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)})
471, 11, 46peano5uzs 28405 . . . . 5 (𝑀 ∈ ℤs → {𝑤 ∈ ℤs𝑀 ≤s 𝑤} ⊆ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)})
4847sseld 3994 . . . 4 (𝑀 ∈ ℤs → (𝑁 ∈ {𝑤 ∈ ℤs𝑀 ≤s 𝑤} → 𝑁 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)}))
49 breq2 5152 . . . . 5 (𝑤 = 𝑁 → (𝑀 ≤s 𝑤𝑀 ≤s 𝑁))
5049elrab 3695 . . . 4 (𝑁 ∈ {𝑤 ∈ ℤs𝑀 ≤s 𝑤} ↔ (𝑁 ∈ ℤs𝑀 ≤s 𝑁))
51 breq2 5152 . . . . . 6 (𝑗 = 𝑁 → (𝑀 ≤s 𝑗𝑀 ≤s 𝑁))
52 uzsind.4 . . . . . 6 (𝑗 = 𝑁 → (𝜑𝜏))
5351, 52anbi12d 632 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ≤s 𝑗𝜑) ↔ (𝑀 ≤s 𝑁𝜏)))
5453elrab 3695 . . . 4 (𝑁 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)} ↔ (𝑁 ∈ ℤs ∧ (𝑀 ≤s 𝑁𝜏)))
5548, 50, 543imtr3g 295 . . 3 (𝑀 ∈ ℤs → ((𝑁 ∈ ℤs𝑀 ≤s 𝑁) → (𝑁 ∈ ℤs ∧ (𝑀 ≤s 𝑁𝜏))))
56553impib 1115 . 2 ((𝑀 ∈ ℤs𝑁 ∈ ℤs𝑀 ≤s 𝑁) → (𝑁 ∈ ℤs ∧ (𝑀 ≤s 𝑁𝜏)))
5756simprrd 774 1 ((𝑀 ∈ ℤs𝑁 ∈ ℤs𝑀 ≤s 𝑁) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433   class class class wbr 5148  (class class class)co 7431   No csur 27699   <s cslt 27700   ≤s csle 27804   1s c1s 27883   +s cadds 28007  sczs 28379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-n0s 28335  df-nns 28336  df-zs 28380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator