Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . 6
⊢ (𝑀 ∈ ℤs
→ 𝑀 ∈
ℤs) |
2 | | zno 28386 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤs
→ 𝑀 ∈ No ) |
3 | | slerflex 27826 |
. . . . . . . . 9
⊢ (𝑀 ∈
No → 𝑀 ≤s
𝑀) |
4 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤs
→ 𝑀 ≤s 𝑀) |
5 | | uzsind.5 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤs
→ 𝜓) |
6 | 1, 4, 5 | jca32 515 |
. . . . . . 7
⊢ (𝑀 ∈ ℤs
→ (𝑀 ∈
ℤs ∧ (𝑀 ≤s 𝑀 ∧ 𝜓))) |
7 | | breq2 5170 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → (𝑀 ≤s 𝑗 ↔ 𝑀 ≤s 𝑀)) |
8 | | uzsind.1 |
. . . . . . . . 9
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) |
9 | 7, 8 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → ((𝑀 ≤s 𝑗 ∧ 𝜑) ↔ (𝑀 ≤s 𝑀 ∧ 𝜓))) |
10 | 9 | elrab 3708 |
. . . . . . 7
⊢ (𝑀 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗 ∧ 𝜑)} ↔ (𝑀 ∈ ℤs ∧ (𝑀 ≤s 𝑀 ∧ 𝜓))) |
11 | 6, 10 | sylibr 234 |
. . . . . 6
⊢ (𝑀 ∈ ℤs
→ 𝑀 ∈ {𝑗 ∈ ℤs
∣ (𝑀 ≤s 𝑗 ∧ 𝜑)}) |
12 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤs
∧ (𝑘 ∈
ℤs ∧ (𝑀 ≤s 𝑘 ∧ 𝜒))) → 𝑀 ∈
ℤs) |
13 | | simprl 770 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤs
∧ (𝑘 ∈
ℤs ∧ (𝑀 ≤s 𝑘 ∧ 𝜒))) → 𝑘 ∈ ℤs) |
14 | | simprrl 780 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤs
∧ (𝑘 ∈
ℤs ∧ (𝑀 ≤s 𝑘 ∧ 𝜒))) → 𝑀 ≤s 𝑘) |
15 | | simprrr 781 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤs
∧ (𝑘 ∈
ℤs ∧ (𝑀 ≤s 𝑘 ∧ 𝜒))) → 𝜒) |
16 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℤs
→ 𝑘 ∈
ℤs) |
17 | | 1zs 28395 |
. . . . . . . . . . . . 13
⊢
1s ∈ ℤs |
18 | 17 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℤs
→ 1s ∈ ℤs) |
19 | 16, 18 | zaddscld 28399 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤs
→ (𝑘 +s
1s ) ∈ ℤs) |
20 | 19 | 3ad2ant2 1134 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) → (𝑘 +s 1s )
∈ ℤs) |
21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) ∧ 𝜒) → (𝑘 +s 1s ) ∈
ℤs) |
22 | 2 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) → 𝑀 ∈
No ) |
23 | 19 | znod 28387 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℤs
→ (𝑘 +s
1s ) ∈ No ) |
24 | 23 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) → (𝑘 +s 1s )
∈ No ) |
25 | | zno 28386 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤs
→ 𝑘 ∈ No ) |
26 | 25 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) → 𝑘 ∈
No ) |
27 | | simp3 1138 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) → 𝑀 ≤s 𝑘) |
28 | 25 | sltp1d 28066 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤs
→ 𝑘 <s (𝑘 +s 1s
)) |
29 | 28 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) → 𝑘 <s (𝑘 +s 1s
)) |
30 | 22, 26, 24, 27, 29 | slelttrd 27824 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) → 𝑀 <s (𝑘 +s 1s
)) |
31 | 22, 24, 30 | sltled 27832 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) → 𝑀 ≤s (𝑘 +s 1s
)) |
32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) ∧ 𝜒) → 𝑀 ≤s (𝑘 +s 1s
)) |
33 | | uzsind.6 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) → (𝜒 → 𝜃)) |
34 | 33 | imp 406 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) ∧ 𝜒) → 𝜃) |
35 | 21, 32, 34 | jca32 515 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤs
∧ 𝑘 ∈
ℤs ∧ 𝑀
≤s 𝑘) ∧ 𝜒) → ((𝑘 +s 1s ) ∈
ℤs ∧ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃))) |
36 | 12, 13, 14, 15, 35 | syl31anc 1373 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤs
∧ (𝑘 ∈
ℤs ∧ (𝑀 ≤s 𝑘 ∧ 𝜒))) → ((𝑘 +s 1s ) ∈
ℤs ∧ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃))) |
37 | | breq2 5170 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑀 ≤s 𝑗 ↔ 𝑀 ≤s 𝑘)) |
38 | | uzsind.2 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) |
39 | 37, 38 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑀 ≤s 𝑗 ∧ 𝜑) ↔ (𝑀 ≤s 𝑘 ∧ 𝜒))) |
40 | 39 | elrab 3708 |
. . . . . . . 8
⊢ (𝑘 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗 ∧ 𝜑)} ↔ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘 ∧ 𝜒))) |
41 | 40 | anbi2i 622 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤs
∧ 𝑘 ∈ {𝑗 ∈ ℤs
∣ (𝑀 ≤s 𝑗 ∧ 𝜑)}) ↔ (𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs
∧ (𝑀 ≤s 𝑘 ∧ 𝜒)))) |
42 | | breq2 5170 |
. . . . . . . . 9
⊢ (𝑗 = (𝑘 +s 1s ) → (𝑀 ≤s 𝑗 ↔ 𝑀 ≤s (𝑘 +s 1s
))) |
43 | | uzsind.3 |
. . . . . . . . 9
⊢ (𝑗 = (𝑘 +s 1s ) → (𝜑 ↔ 𝜃)) |
44 | 42, 43 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑗 = (𝑘 +s 1s ) → ((𝑀 ≤s 𝑗 ∧ 𝜑) ↔ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃))) |
45 | 44 | elrab 3708 |
. . . . . . 7
⊢ ((𝑘 +s 1s )
∈ {𝑗 ∈
ℤs ∣ (𝑀 ≤s 𝑗 ∧ 𝜑)} ↔ ((𝑘 +s 1s ) ∈
ℤs ∧ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃))) |
46 | 36, 41, 45 | 3imtr4i 292 |
. . . . . 6
⊢ ((𝑀 ∈ ℤs
∧ 𝑘 ∈ {𝑗 ∈ ℤs
∣ (𝑀 ≤s 𝑗 ∧ 𝜑)}) → (𝑘 +s 1s ) ∈ {𝑗 ∈ ℤs
∣ (𝑀 ≤s 𝑗 ∧ 𝜑)}) |
47 | 1, 11, 46 | peano5uzs 28408 |
. . . . 5
⊢ (𝑀 ∈ ℤs
→ {𝑤 ∈
ℤs ∣ 𝑀 ≤s 𝑤} ⊆ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗 ∧ 𝜑)}) |
48 | 47 | sseld 4007 |
. . . 4
⊢ (𝑀 ∈ ℤs
→ (𝑁 ∈ {𝑤 ∈ ℤs
∣ 𝑀 ≤s 𝑤} → 𝑁 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗 ∧ 𝜑)})) |
49 | | breq2 5170 |
. . . . 5
⊢ (𝑤 = 𝑁 → (𝑀 ≤s 𝑤 ↔ 𝑀 ≤s 𝑁)) |
50 | 49 | elrab 3708 |
. . . 4
⊢ (𝑁 ∈ {𝑤 ∈ ℤs ∣ 𝑀 ≤s 𝑤} ↔ (𝑁 ∈ ℤs ∧ 𝑀 ≤s 𝑁)) |
51 | | breq2 5170 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝑀 ≤s 𝑗 ↔ 𝑀 ≤s 𝑁)) |
52 | | uzsind.4 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
53 | 51, 52 | anbi12d 631 |
. . . . 5
⊢ (𝑗 = 𝑁 → ((𝑀 ≤s 𝑗 ∧ 𝜑) ↔ (𝑀 ≤s 𝑁 ∧ 𝜏))) |
54 | 53 | elrab 3708 |
. . . 4
⊢ (𝑁 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗 ∧ 𝜑)} ↔ (𝑁 ∈ ℤs ∧ (𝑀 ≤s 𝑁 ∧ 𝜏))) |
55 | 48, 50, 54 | 3imtr3g 295 |
. . 3
⊢ (𝑀 ∈ ℤs
→ ((𝑁 ∈
ℤs ∧ 𝑀
≤s 𝑁) → (𝑁 ∈ ℤs
∧ (𝑀 ≤s 𝑁 ∧ 𝜏)))) |
56 | 55 | 3impib 1116 |
. 2
⊢ ((𝑀 ∈ ℤs
∧ 𝑁 ∈
ℤs ∧ 𝑀
≤s 𝑁) → (𝑁 ∈ ℤs
∧ (𝑀 ≤s 𝑁 ∧ 𝜏))) |
57 | 56 | simprrd 773 |
1
⊢ ((𝑀 ∈ ℤs
∧ 𝑁 ∈
ℤs ∧ 𝑀
≤s 𝑁) → 𝜏) |