MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsind Structured version   Visualization version   GIF version

Theorem uzsind 28409
Description: Induction on the upper surreal integers that start at 𝑀. (Contributed by Scott Fenton, 25-Jul-2025.)
Hypotheses
Ref Expression
uzsind.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzsind.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzsind.3 (𝑗 = (𝑘 +s 1s ) → (𝜑𝜃))
uzsind.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzsind.5 (𝑀 ∈ ℤs𝜓)
uzsind.6 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → (𝜒𝜃))
Assertion
Ref Expression
uzsind ((𝑀 ∈ ℤs𝑁 ∈ ℤs𝑀 ≤s 𝑁) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzsind
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝑀 ∈ ℤs𝑀 ∈ ℤs)
2 zno 28386 . . . . . . . . 9 (𝑀 ∈ ℤs𝑀 No )
3 slerflex 27826 . . . . . . . . 9 (𝑀 No 𝑀 ≤s 𝑀)
42, 3syl 17 . . . . . . . 8 (𝑀 ∈ ℤs𝑀 ≤s 𝑀)
5 uzsind.5 . . . . . . . 8 (𝑀 ∈ ℤs𝜓)
61, 4, 5jca32 515 . . . . . . 7 (𝑀 ∈ ℤs → (𝑀 ∈ ℤs ∧ (𝑀 ≤s 𝑀𝜓)))
7 breq2 5170 . . . . . . . . 9 (𝑗 = 𝑀 → (𝑀 ≤s 𝑗𝑀 ≤s 𝑀))
8 uzsind.1 . . . . . . . . 9 (𝑗 = 𝑀 → (𝜑𝜓))
97, 8anbi12d 631 . . . . . . . 8 (𝑗 = 𝑀 → ((𝑀 ≤s 𝑗𝜑) ↔ (𝑀 ≤s 𝑀𝜓)))
109elrab 3708 . . . . . . 7 (𝑀 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)} ↔ (𝑀 ∈ ℤs ∧ (𝑀 ≤s 𝑀𝜓)))
116, 10sylibr 234 . . . . . 6 (𝑀 ∈ ℤs𝑀 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)})
12 simpl 482 . . . . . . . 8 ((𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))) → 𝑀 ∈ ℤs)
13 simprl 770 . . . . . . . 8 ((𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))) → 𝑘 ∈ ℤs)
14 simprrl 780 . . . . . . . 8 ((𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))) → 𝑀 ≤s 𝑘)
15 simprrr 781 . . . . . . . 8 ((𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))) → 𝜒)
16 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℤs𝑘 ∈ ℤs)
17 1zs 28395 . . . . . . . . . . . . 13 1s ∈ ℤs
1817a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℤs → 1s ∈ ℤs)
1916, 18zaddscld 28399 . . . . . . . . . . 11 (𝑘 ∈ ℤs → (𝑘 +s 1s ) ∈ ℤs)
20193ad2ant2 1134 . . . . . . . . . 10 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → (𝑘 +s 1s ) ∈ ℤs)
2120adantr 480 . . . . . . . . 9 (((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) ∧ 𝜒) → (𝑘 +s 1s ) ∈ ℤs)
2223ad2ant1 1133 . . . . . . . . . . 11 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑀 No )
2319znod 28387 . . . . . . . . . . . 12 (𝑘 ∈ ℤs → (𝑘 +s 1s ) ∈ No )
24233ad2ant2 1134 . . . . . . . . . . 11 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → (𝑘 +s 1s ) ∈ No )
25 zno 28386 . . . . . . . . . . . . 13 (𝑘 ∈ ℤs𝑘 No )
26253ad2ant2 1134 . . . . . . . . . . . 12 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑘 No )
27 simp3 1138 . . . . . . . . . . . 12 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑀 ≤s 𝑘)
2825sltp1d 28066 . . . . . . . . . . . . 13 (𝑘 ∈ ℤs𝑘 <s (𝑘 +s 1s ))
29283ad2ant2 1134 . . . . . . . . . . . 12 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑘 <s (𝑘 +s 1s ))
3022, 26, 24, 27, 29slelttrd 27824 . . . . . . . . . . 11 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑀 <s (𝑘 +s 1s ))
3122, 24, 30sltled 27832 . . . . . . . . . 10 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → 𝑀 ≤s (𝑘 +s 1s ))
3231adantr 480 . . . . . . . . 9 (((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) ∧ 𝜒) → 𝑀 ≤s (𝑘 +s 1s ))
33 uzsind.6 . . . . . . . . . 10 ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → (𝜒𝜃))
3433imp 406 . . . . . . . . 9 (((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) ∧ 𝜒) → 𝜃)
3521, 32, 34jca32 515 . . . . . . . 8 (((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) ∧ 𝜒) → ((𝑘 +s 1s ) ∈ ℤs ∧ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃)))
3612, 13, 14, 15, 35syl31anc 1373 . . . . . . 7 ((𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))) → ((𝑘 +s 1s ) ∈ ℤs ∧ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃)))
37 breq2 5170 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑀 ≤s 𝑗𝑀 ≤s 𝑘))
38 uzsind.2 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝜑𝜒))
3937, 38anbi12d 631 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑀 ≤s 𝑗𝜑) ↔ (𝑀 ≤s 𝑘𝜒)))
4039elrab 3708 . . . . . . . 8 (𝑘 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)} ↔ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒)))
4140anbi2i 622 . . . . . . 7 ((𝑀 ∈ ℤs𝑘 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)}) ↔ (𝑀 ∈ ℤs ∧ (𝑘 ∈ ℤs ∧ (𝑀 ≤s 𝑘𝜒))))
42 breq2 5170 . . . . . . . . 9 (𝑗 = (𝑘 +s 1s ) → (𝑀 ≤s 𝑗𝑀 ≤s (𝑘 +s 1s )))
43 uzsind.3 . . . . . . . . 9 (𝑗 = (𝑘 +s 1s ) → (𝜑𝜃))
4442, 43anbi12d 631 . . . . . . . 8 (𝑗 = (𝑘 +s 1s ) → ((𝑀 ≤s 𝑗𝜑) ↔ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃)))
4544elrab 3708 . . . . . . 7 ((𝑘 +s 1s ) ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)} ↔ ((𝑘 +s 1s ) ∈ ℤs ∧ (𝑀 ≤s (𝑘 +s 1s ) ∧ 𝜃)))
4636, 41, 453imtr4i 292 . . . . . 6 ((𝑀 ∈ ℤs𝑘 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)}) → (𝑘 +s 1s ) ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)})
471, 11, 46peano5uzs 28408 . . . . 5 (𝑀 ∈ ℤs → {𝑤 ∈ ℤs𝑀 ≤s 𝑤} ⊆ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)})
4847sseld 4007 . . . 4 (𝑀 ∈ ℤs → (𝑁 ∈ {𝑤 ∈ ℤs𝑀 ≤s 𝑤} → 𝑁 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)}))
49 breq2 5170 . . . . 5 (𝑤 = 𝑁 → (𝑀 ≤s 𝑤𝑀 ≤s 𝑁))
5049elrab 3708 . . . 4 (𝑁 ∈ {𝑤 ∈ ℤs𝑀 ≤s 𝑤} ↔ (𝑁 ∈ ℤs𝑀 ≤s 𝑁))
51 breq2 5170 . . . . . 6 (𝑗 = 𝑁 → (𝑀 ≤s 𝑗𝑀 ≤s 𝑁))
52 uzsind.4 . . . . . 6 (𝑗 = 𝑁 → (𝜑𝜏))
5351, 52anbi12d 631 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ≤s 𝑗𝜑) ↔ (𝑀 ≤s 𝑁𝜏)))
5453elrab 3708 . . . 4 (𝑁 ∈ {𝑗 ∈ ℤs ∣ (𝑀 ≤s 𝑗𝜑)} ↔ (𝑁 ∈ ℤs ∧ (𝑀 ≤s 𝑁𝜏)))
5548, 50, 543imtr3g 295 . . 3 (𝑀 ∈ ℤs → ((𝑁 ∈ ℤs𝑀 ≤s 𝑁) → (𝑁 ∈ ℤs ∧ (𝑀 ≤s 𝑁𝜏))))
56553impib 1116 . 2 ((𝑀 ∈ ℤs𝑁 ∈ ℤs𝑀 ≤s 𝑁) → (𝑁 ∈ ℤs ∧ (𝑀 ≤s 𝑁𝜏)))
5756simprrd 773 1 ((𝑀 ∈ ℤs𝑁 ∈ ℤs𝑀 ≤s 𝑁) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  (class class class)co 7448   No csur 27702   <s cslt 27703   ≤s csle 27807   1s c1s 27886   +s cadds 28010  sczs 28382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-n0s 28338  df-nns 28339  df-zs 28383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator