| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > monoord2xr | Structured version Visualization version GIF version | ||
| Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| Ref | Expression |
|---|---|
| monoord2xr.p | ⊢ Ⅎ𝑘𝜑 |
| monoord2xr.k | ⊢ Ⅎ𝑘𝐹 |
| monoord2xr.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| monoord2xr.x | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) |
| monoord2xr.l | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| monoord2xr | ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monoord2xr.n | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | monoord2xr.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 3 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (𝑀...𝑁) | |
| 4 | 2, 3 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) |
| 5 | monoord2xr.k | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
| 6 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 7 | 5, 6 | nffv 6886 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 8 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑘ℝ* | |
| 9 | 7, 8 | nfel 2913 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℝ* |
| 10 | 4, 9 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*) |
| 11 | eleq1w 2817 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁))) | |
| 12 | 11 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)))) |
| 13 | fveq2 6876 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 14 | 13 | eleq1d 2819 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘𝑗) ∈ ℝ*)) |
| 15 | 12, 14 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) ↔ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*))) |
| 16 | monoord2xr.x | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) | |
| 17 | 10, 15, 16 | chvarfv 2240 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*) |
| 18 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (𝑀...(𝑁 − 1)) | |
| 19 | 2, 18 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) |
| 20 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑘(𝑗 + 1) | |
| 21 | 5, 20 | nffv 6886 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) |
| 22 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
| 23 | 21, 22, 7 | nfbr 5166 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗) |
| 24 | 19, 23 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
| 25 | eleq1w 2817 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑗 ∈ (𝑀...(𝑁 − 1)))) | |
| 26 | 25 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))))) |
| 27 | fvoveq1 7428 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1))) | |
| 28 | 27, 13 | breq12d 5132 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗))) |
| 29 | 26, 28 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)))) |
| 30 | monoord2xr.l | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
| 31 | 24, 29, 30 | chvarfv 2240 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
| 32 | 1, 17, 31 | monoord2xrv 45510 | 1 ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 1c1 11130 + caddc 11132 ℝ*cxr 11268 ≤ cle 11270 − cmin 11466 ℤ≥cuz 12852 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-xneg 13128 df-fz 13525 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |