Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoord2xr Structured version   Visualization version   GIF version

Theorem monoord2xr 41754
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoord2xr.p 𝑘𝜑
monoord2xr.k 𝑘𝐹
monoord2xr.n (𝜑𝑁 ∈ (ℤ𝑀))
monoord2xr.x ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoord2xr.l ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
Assertion
Ref Expression
monoord2xr (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)

Proof of Theorem monoord2xr
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 monoord2xr.n . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoord2xr.p . . . . 5 𝑘𝜑
3 nfv 1911 . . . . 5 𝑘 𝑗 ∈ (𝑀...𝑁)
42, 3nfan 1896 . . . 4 𝑘(𝜑𝑗 ∈ (𝑀...𝑁))
5 monoord2xr.k . . . . . 6 𝑘𝐹
6 nfcv 2977 . . . . . 6 𝑘𝑗
75, 6nffv 6674 . . . . 5 𝑘(𝐹𝑗)
8 nfcv 2977 . . . . 5 𝑘*
97, 8nfel 2992 . . . 4 𝑘(𝐹𝑗) ∈ ℝ*
104, 9nfim 1893 . . 3 𝑘((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)
11 eleq1w 2895 . . . . 5 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁)))
1211anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑗 ∈ (𝑀...𝑁))))
13 fveq2 6664 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1413eleq1d 2897 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑗) ∈ ℝ*))
1512, 14imbi12d 347 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*) ↔ ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)))
16 monoord2xr.x . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
1710, 15, 16chvarfv 2238 . 2 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)
18 nfv 1911 . . . . 5 𝑘 𝑗 ∈ (𝑀...(𝑁 − 1))
192, 18nfan 1896 . . . 4 𝑘(𝜑𝑗 ∈ (𝑀...(𝑁 − 1)))
20 nfcv 2977 . . . . . 6 𝑘(𝑗 + 1)
215, 20nffv 6674 . . . . 5 𝑘(𝐹‘(𝑗 + 1))
22 nfcv 2977 . . . . 5 𝑘
2321, 22, 7nfbr 5105 . . . 4 𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗)
2419, 23nfim 1893 . . 3 𝑘((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗))
25 eleq1w 2895 . . . . 5 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑗 ∈ (𝑀...(𝑁 − 1))))
2625anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝜑𝑗 ∈ (𝑀...(𝑁 − 1)))))
27 fvoveq1 7173 . . . . 5 (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1)))
2827, 13breq12d 5071 . . . 4 (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗)))
2926, 28imbi12d 347 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘)) ↔ ((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗))))
30 monoord2xr.l . . 3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
3124, 29, 30chvarfv 2238 . 2 ((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑗 + 1)) ≤ (𝐹𝑗))
321, 17, 31monoord2xrv 41753 1 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wnf 1780  wcel 2110  wnfc 2961   class class class wbr 5058  cfv 6349  (class class class)co 7150  1c1 10532   + caddc 10534  *cxr 10668  cle 10670  cmin 10864  cuz 12237  ...cfz 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-xneg 12501  df-fz 12887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator