![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > monoord2xr | Structured version Visualization version GIF version |
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
Ref | Expression |
---|---|
monoord2xr.p | ⊢ Ⅎ𝑘𝜑 |
monoord2xr.k | ⊢ Ⅎ𝑘𝐹 |
monoord2xr.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
monoord2xr.x | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) |
monoord2xr.l | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
monoord2xr | ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | monoord2xr.n | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | monoord2xr.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
3 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (𝑀...𝑁) | |
4 | 2, 3 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) |
5 | monoord2xr.k | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
6 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
7 | 5, 6 | nffv 6902 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
8 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑘ℝ* | |
9 | 7, 8 | nfel 2918 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℝ* |
10 | 4, 9 | nfim 1900 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*) |
11 | eleq1w 2817 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁))) | |
12 | 11 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)))) |
13 | fveq2 6892 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
14 | 13 | eleq1d 2819 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘𝑗) ∈ ℝ*)) |
15 | 12, 14 | imbi12d 345 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) ↔ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*))) |
16 | monoord2xr.x | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) | |
17 | 10, 15, 16 | chvarfv 2234 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*) |
18 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (𝑀...(𝑁 − 1)) | |
19 | 2, 18 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) |
20 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘(𝑗 + 1) | |
21 | 5, 20 | nffv 6902 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) |
22 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
23 | 21, 22, 7 | nfbr 5196 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗) |
24 | 19, 23 | nfim 1900 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
25 | eleq1w 2817 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑗 ∈ (𝑀...(𝑁 − 1)))) | |
26 | 25 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))))) |
27 | fvoveq1 7432 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1))) | |
28 | 27, 13 | breq12d 5162 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗))) |
29 | 26, 28 | imbi12d 345 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)))) |
30 | monoord2xr.l | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
31 | 24, 29, 30 | chvarfv 2234 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
32 | 1, 17, 31 | monoord2xrv 44194 | 1 ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 1c1 11111 + caddc 11113 ℝ*cxr 11247 ≤ cle 11249 − cmin 11444 ℤ≥cuz 12822 ...cfz 13484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-xneg 13092 df-fz 13485 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |