ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem13m GIF version

Theorem 4sqlem13m 12926
Description: Lemma for 4sq 12933. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
Assertion
Ref Expression
4sqlem13m (𝜑 → (∃𝑗 𝑗𝑇𝑀 < 𝑃))
Distinct variable groups:   𝑛,𝑁   𝑃,𝑖,𝑛,𝑤,𝑥,𝑦,𝑧   𝑆,𝑖,𝑛   𝑇,𝑗   𝜑,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑗)   𝑃(𝑗)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑗)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑖,𝑗,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖,𝑗)

Proof of Theorem 4sqlem13m
Dummy variables 𝑘 𝑢 𝑚 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sqlem11.1 . . 3 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
2 4sq.2 . . 3 (𝜑𝑁 ∈ ℕ)
3 4sq.3 . . 3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4 4sq.4 . . 3 (𝜑𝑃 ∈ ℙ)
5 eqid 2229 . . 3 {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
6 eqid 2229 . . 3 (𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↦ ((𝑃 − 1) − 𝑣)) = (𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↦ ((𝑃 − 1) − 𝑣))
71, 2, 3, 4, 5, 64sqlem12 12925 . 2 (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
8 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ (1...(𝑃 − 1)))
9 elfznn 10250 . . . . . . . 8 (𝑘 ∈ (1...(𝑃 − 1)) → 𝑘 ∈ ℕ)
108, 9syl 14 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ ℕ)
11 simpr 110 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
12 abs1 11583 . . . . . . . . . . . 12 (abs‘1) = 1
1312oveq1i 6011 . . . . . . . . . . 11 ((abs‘1)↑2) = (1↑2)
14 sq1 10855 . . . . . . . . . . 11 (1↑2) = 1
1513, 14eqtri 2250 . . . . . . . . . 10 ((abs‘1)↑2) = 1
1615oveq2i 6012 . . . . . . . . 9 (((abs‘𝑢)↑2) + ((abs‘1)↑2)) = (((abs‘𝑢)↑2) + 1)
17 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑢 ∈ ℤ[i])
18 1z 9472 . . . . . . . . . . 11 1 ∈ ℤ
19 zgz 12896 . . . . . . . . . . 11 (1 ∈ ℤ → 1 ∈ ℤ[i])
2018, 19ax-mp 5 . . . . . . . . . 10 1 ∈ ℤ[i]
2114sqlem4a 12914 . . . . . . . . . 10 ((𝑢 ∈ ℤ[i] ∧ 1 ∈ ℤ[i]) → (((abs‘𝑢)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
2217, 20, 21sylancl 413 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
2316, 22eqeltrrid 2317 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + 1) ∈ 𝑆)
2411, 23eqeltrrd 2307 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 · 𝑃) ∈ 𝑆)
25 oveq1 6008 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 · 𝑃) = (𝑘 · 𝑃))
2625eleq1d 2298 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (𝑘 · 𝑃) ∈ 𝑆))
27 4sq.6 . . . . . . . 8 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
2826, 27elrab2 2962 . . . . . . 7 (𝑘𝑇 ↔ (𝑘 ∈ ℕ ∧ (𝑘 · 𝑃) ∈ 𝑆))
2910, 24, 28sylanbrc 417 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘𝑇)
30 elex2 2816 . . . . . 6 (𝑘𝑇 → ∃𝑗 𝑗𝑇)
3129, 30syl 14 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → ∃𝑗 𝑗𝑇)
3227ssrab3 3310 . . . . . . . 8 𝑇 ⊆ ℕ
33 4sq.7 . . . . . . . . 9 𝑀 = inf(𝑇, ℝ, < )
34 1zzd 9473 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 1 ∈ ℤ)
35 nnuz 9758 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
3635rabeqi 2792 . . . . . . . . . . 11 {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} = {𝑖 ∈ (ℤ‘1) ∣ (𝑖 · 𝑃) ∈ 𝑆}
3727, 36eqtri 2250 . . . . . . . . . 10 𝑇 = {𝑖 ∈ (ℤ‘1) ∣ (𝑖 · 𝑃) ∈ 𝑆}
38 elfznn 10250 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑘) → 𝑖 ∈ ℕ)
3938adantl 277 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) ∧ 𝑖 ∈ (1...𝑘)) → 𝑖 ∈ ℕ)
40 prmnn 12632 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
414, 40syl 14 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
4241ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) ∧ 𝑖 ∈ (1...𝑘)) → 𝑃 ∈ ℕ)
4339, 42nnmulcld 9159 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) ∧ 𝑖 ∈ (1...𝑘)) → (𝑖 · 𝑃) ∈ ℕ)
4443nnnn0d 9422 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) ∧ 𝑖 ∈ (1...𝑘)) → (𝑖 · 𝑃) ∈ ℕ0)
4514sqlemsdc 12923 . . . . . . . . . . 11 ((𝑖 · 𝑃) ∈ ℕ0DECID (𝑖 · 𝑃) ∈ 𝑆)
4644, 45syl 14 . . . . . . . . . 10 ((((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) ∧ 𝑖 ∈ (1...𝑘)) → DECID (𝑖 · 𝑃) ∈ 𝑆)
4734, 37, 29, 46infssuzcldc 10455 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → inf(𝑇, ℝ, < ) ∈ 𝑇)
4833, 47eqeltrid 2316 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀𝑇)
4932, 48sselid 3222 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ∈ ℕ)
5049nnred 9123 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ∈ ℝ)
5110nnred 9123 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ ℝ)
5241nnred 9123 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
5352ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℝ)
5434, 37, 29, 46infssuzledc 10454 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → inf(𝑇, ℝ, < ) ≤ 𝑘)
5533, 54eqbrtrid 4118 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀𝑘)
56 prmz 12633 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
574, 56syl 14 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
5857ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℤ)
59 elfzm11 10287 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 ∈ (1...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃)))
6018, 58, 59sylancr 414 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 ∈ (1...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃)))
618, 60mpbid 147 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃))
6261simp3d 1035 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 < 𝑃)
6350, 51, 53, 55, 62lelttrd 8271 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 < 𝑃)
6431, 63jca 306 . . . 4 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (∃𝑗 𝑗𝑇𝑀 < 𝑃))
6564ex 115 . . 3 ((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) → ((((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) → (∃𝑗 𝑗𝑇𝑀 < 𝑃)))
6665rexlimdvva 2656 . 2 (𝜑 → (∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) → (∃𝑗 𝑗𝑇𝑀 < 𝑃)))
677, 66mpd 13 1 (𝜑 → (∃𝑗 𝑗𝑇𝑀 < 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 839  w3a 1002   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wrex 2509  {crab 2512  wss 3197   class class class wbr 4083  cmpt 4145  cfv 5318  (class class class)co 6001  infcinf 7150  cr 7998  0cc0 7999  1c1 8000   + caddc 8002   · cmul 8004   < clt 8181  cle 8182  cmin 8317  cn 9110  2c2 9161  0cn0 9369  cz 9446  cuz 9722  ...cfz 10204   mod cmo 10544  cexp 10760  abscabs 11508  cprime 12629  ℤ[i]cgz 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-2o 6563  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630  df-gz 12893
This theorem is referenced by:  4sqlem14  12927  4sqlem17  12930  4sqlem18  12931
  Copyright terms: Public domain W3C validator