| Step | Hyp | Ref
| Expression |
| 1 | | 4sqlem11.1 |
. . 3
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} |
| 2 | | 4sq.2 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 3 | | 4sq.3 |
. . 3
⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) |
| 4 | | 4sq.4 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 5 | | eqid 2196 |
. . 3
⊢ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} |
| 6 | | eqid 2196 |
. . 3
⊢ (𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↦ ((𝑃 − 1) − 𝑣)) = (𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↦ ((𝑃 − 1) − 𝑣)) |
| 7 | 1, 2, 3, 4, 5, 6 | 4sqlem12 12571 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) |
| 8 | | simplrl 535 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ (1...(𝑃 − 1))) |
| 9 | | elfznn 10129 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...(𝑃 − 1)) → 𝑘 ∈ ℕ) |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ ℕ) |
| 11 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) |
| 12 | | abs1 11237 |
. . . . . . . . . . . 12
⊢
(abs‘1) = 1 |
| 13 | 12 | oveq1i 5932 |
. . . . . . . . . . 11
⊢
((abs‘1)↑2) = (1↑2) |
| 14 | | sq1 10725 |
. . . . . . . . . . 11
⊢
(1↑2) = 1 |
| 15 | 13, 14 | eqtri 2217 |
. . . . . . . . . 10
⊢
((abs‘1)↑2) = 1 |
| 16 | 15 | oveq2i 5933 |
. . . . . . . . 9
⊢
(((abs‘𝑢)↑2) + ((abs‘1)↑2)) =
(((abs‘𝑢)↑2) +
1) |
| 17 | | simplrr 536 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑢 ∈ ℤ[i]) |
| 18 | | 1z 9352 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ |
| 19 | | zgz 12542 |
. . . . . . . . . . 11
⊢ (1 ∈
ℤ → 1 ∈ ℤ[i]) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ[i] |
| 21 | 1 | 4sqlem4a 12560 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℤ[i] ∧ 1
∈ ℤ[i]) → (((abs‘𝑢)↑2) + ((abs‘1)↑2)) ∈
𝑆) |
| 22 | 17, 20, 21 | sylancl 413 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + ((abs‘1)↑2)) ∈
𝑆) |
| 23 | 16, 22 | eqeltrrid 2284 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + 1) ∈ 𝑆) |
| 24 | 11, 23 | eqeltrrd 2274 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 · 𝑃) ∈ 𝑆) |
| 25 | | oveq1 5929 |
. . . . . . . . 9
⊢ (𝑖 = 𝑘 → (𝑖 · 𝑃) = (𝑘 · 𝑃)) |
| 26 | 25 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑖 = 𝑘 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (𝑘 · 𝑃) ∈ 𝑆)) |
| 27 | | 4sq.6 |
. . . . . . . 8
⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} |
| 28 | 26, 27 | elrab2 2923 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑇 ↔ (𝑘 ∈ ℕ ∧ (𝑘 · 𝑃) ∈ 𝑆)) |
| 29 | 10, 24, 28 | sylanbrc 417 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ 𝑇) |
| 30 | | elex2 2779 |
. . . . . 6
⊢ (𝑘 ∈ 𝑇 → ∃𝑗 𝑗 ∈ 𝑇) |
| 31 | 29, 30 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → ∃𝑗 𝑗 ∈ 𝑇) |
| 32 | 27 | ssrab3 3269 |
. . . . . . . 8
⊢ 𝑇 ⊆
ℕ |
| 33 | | 4sq.7 |
. . . . . . . . 9
⊢ 𝑀 = inf(𝑇, ℝ, < ) |
| 34 | | 1zzd 9353 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 1 ∈ ℤ) |
| 35 | | nnuz 9637 |
. . . . . . . . . . . 12
⊢ ℕ =
(ℤ≥‘1) |
| 36 | 35 | rabeqi 2756 |
. . . . . . . . . . 11
⊢ {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} = {𝑖 ∈ (ℤ≥‘1)
∣ (𝑖 · 𝑃) ∈ 𝑆} |
| 37 | 27, 36 | eqtri 2217 |
. . . . . . . . . 10
⊢ 𝑇 = {𝑖 ∈ (ℤ≥‘1)
∣ (𝑖 · 𝑃) ∈ 𝑆} |
| 38 | | elfznn 10129 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑘) → 𝑖 ∈ ℕ) |
| 39 | 38 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) ∧ 𝑖 ∈ (1...𝑘)) → 𝑖 ∈ ℕ) |
| 40 | | prmnn 12278 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 41 | 4, 40 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 42 | 41 | ad3antrrr 492 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) ∧ 𝑖 ∈ (1...𝑘)) → 𝑃 ∈ ℕ) |
| 43 | 39, 42 | nnmulcld 9039 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) ∧ 𝑖 ∈ (1...𝑘)) → (𝑖 · 𝑃) ∈ ℕ) |
| 44 | 43 | nnnn0d 9302 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) ∧ 𝑖 ∈ (1...𝑘)) → (𝑖 · 𝑃) ∈
ℕ0) |
| 45 | 1 | 4sqlemsdc 12569 |
. . . . . . . . . . 11
⊢ ((𝑖 · 𝑃) ∈ ℕ0 →
DECID (𝑖
· 𝑃) ∈ 𝑆) |
| 46 | 44, 45 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) ∧ 𝑖 ∈ (1...𝑘)) → DECID (𝑖 · 𝑃) ∈ 𝑆) |
| 47 | 34, 37, 29, 46 | infssuzcldc 10325 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → inf(𝑇, ℝ, < ) ∈ 𝑇) |
| 48 | 33, 47 | eqeltrid 2283 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ∈ 𝑇) |
| 49 | 32, 48 | sselid 3181 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ∈ ℕ) |
| 50 | 49 | nnred 9003 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ∈ ℝ) |
| 51 | 10 | nnred 9003 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ ℝ) |
| 52 | 41 | nnred 9003 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 53 | 52 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℝ) |
| 54 | 34, 37, 29, 46 | infssuzledc 10324 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → inf(𝑇, ℝ, < ) ≤ 𝑘) |
| 55 | 33, 54 | eqbrtrid 4068 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ≤ 𝑘) |
| 56 | | prmz 12279 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 57 | 4, 56 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 58 | 57 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℤ) |
| 59 | | elfzm11 10166 |
. . . . . . . . 9
⊢ ((1
∈ ℤ ∧ 𝑃
∈ ℤ) → (𝑘
∈ (1...(𝑃 − 1))
↔ (𝑘 ∈ ℤ
∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑃))) |
| 60 | 18, 58, 59 | sylancr 414 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 ∈ (1...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑃))) |
| 61 | 8, 60 | mpbid 147 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑃)) |
| 62 | 61 | simp3d 1013 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 < 𝑃) |
| 63 | 50, 51, 53, 55, 62 | lelttrd 8151 |
. . . . 5
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 < 𝑃) |
| 64 | 31, 63 | jca 306 |
. . . 4
⊢ (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (∃𝑗 𝑗 ∈ 𝑇 ∧ 𝑀 < 𝑃)) |
| 65 | 64 | ex 115 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) →
((((abs‘𝑢)↑2) +
1) = (𝑘 · 𝑃) → (∃𝑗 𝑗 ∈ 𝑇 ∧ 𝑀 < 𝑃))) |
| 66 | 65 | rexlimdvva 2622 |
. 2
⊢ (𝜑 → (∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) → (∃𝑗 𝑗 ∈ 𝑇 ∧ 𝑀 < 𝑃))) |
| 67 | 7, 66 | mpd 13 |
1
⊢ (𝜑 → (∃𝑗 𝑗 ∈ 𝑇 ∧ 𝑀 < 𝑃)) |