| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenrevpfxcctswrd | GIF version | ||
| Description: The length of the concatenation of the rest of a word and the prefix of the word is the length of the word. (Contributed by Alexander van der Vekens, 1-Apr-2018.) (Revised by AV, 9-May-2020.) |
| Ref | Expression |
|---|---|
| lenrevpfxcctswrd | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘((𝑊 substr 〈𝑀, (♯‘𝑊)〉) ++ (𝑊 prefix 𝑀))) = (♯‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
| 2 | elfzelz 10229 | . . . . 5 ⊢ (𝑀 ∈ (0...(♯‘𝑊)) → 𝑀 ∈ ℤ) | |
| 3 | 2 | adantl 277 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → 𝑀 ∈ ℤ) |
| 4 | lencl 11083 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 5 | 4 | nn0zd 9575 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ ℤ) |
| 7 | swrdclg 11190 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝑊 substr 〈𝑀, (♯‘𝑊)〉) ∈ Word 𝑉) | |
| 8 | 1, 3, 6, 7 | syl3anc 1271 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈𝑀, (♯‘𝑊)〉) ∈ Word 𝑉) |
| 9 | elfznn0 10318 | . . . . 5 ⊢ (𝑀 ∈ (0...(♯‘𝑊)) → 𝑀 ∈ ℕ0) | |
| 10 | 9 | adantl 277 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → 𝑀 ∈ ℕ0) |
| 11 | pfxclg 11218 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℕ0) → (𝑊 prefix 𝑀) ∈ Word 𝑉) | |
| 12 | 1, 10, 11 | syl2anc 411 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝑀) ∈ Word 𝑉) |
| 13 | ccatlen 11138 | . . 3 ⊢ (((𝑊 substr 〈𝑀, (♯‘𝑊)〉) ∈ Word 𝑉 ∧ (𝑊 prefix 𝑀) ∈ Word 𝑉) → (♯‘((𝑊 substr 〈𝑀, (♯‘𝑊)〉) ++ (𝑊 prefix 𝑀))) = ((♯‘(𝑊 substr 〈𝑀, (♯‘𝑊)〉)) + (♯‘(𝑊 prefix 𝑀)))) | |
| 14 | 8, 12, 13 | syl2anc 411 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘((𝑊 substr 〈𝑀, (♯‘𝑊)〉) ++ (𝑊 prefix 𝑀))) = ((♯‘(𝑊 substr 〈𝑀, (♯‘𝑊)〉)) + (♯‘(𝑊 prefix 𝑀)))) |
| 15 | swrdrlen 11201 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr 〈𝑀, (♯‘𝑊)〉)) = ((♯‘𝑊) − 𝑀)) | |
| 16 | fznn0sub 10261 | . . . . . 6 ⊢ (𝑀 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝑀) ∈ ℕ0) | |
| 17 | 16 | adantl 277 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → ((♯‘𝑊) − 𝑀) ∈ ℕ0) |
| 18 | 15, 17 | eqeltrd 2306 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr 〈𝑀, (♯‘𝑊)〉)) ∈ ℕ0) |
| 19 | 18 | nn0cnd 9432 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr 〈𝑀, (♯‘𝑊)〉)) ∈ ℂ) |
| 20 | pfxlen 11225 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀) | |
| 21 | 20, 10 | eqeltrd 2306 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝑀)) ∈ ℕ0) |
| 22 | 21 | nn0cnd 9432 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝑀)) ∈ ℂ) |
| 23 | 19, 22 | addcomd 8305 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 substr 〈𝑀, (♯‘𝑊)〉)) + (♯‘(𝑊 prefix 𝑀))) = ((♯‘(𝑊 prefix 𝑀)) + (♯‘(𝑊 substr 〈𝑀, (♯‘𝑊)〉)))) |
| 24 | addlenpfx 11231 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 prefix 𝑀)) + (♯‘(𝑊 substr 〈𝑀, (♯‘𝑊)〉))) = (♯‘𝑊)) | |
| 25 | 14, 23, 24 | 3eqtrd 2266 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘((𝑊 substr 〈𝑀, (♯‘𝑊)〉) ++ (𝑊 prefix 𝑀))) = (♯‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 ‘cfv 5318 (class class class)co 6007 0cc0 8007 + caddc 8010 − cmin 8325 ℕ0cn0 9377 ℤcz 9454 ...cfz 10212 ♯chash 11005 Word cword 11079 ++ cconcat 11133 substr csubstr 11185 prefix cpfx 11212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 df-ihash 11006 df-word 11080 df-concat 11134 df-substr 11186 df-pfx 11213 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |