| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swrdclg | GIF version | ||
| Description: Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| swrdclg | ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) ∈ Word 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdval 11175 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅)) | |
| 2 | wrdf 11072 | . . . . . . . 8 ⊢ (𝑆 ∈ Word 𝐴 → 𝑆:(0..^(♯‘𝑆))⟶𝐴) | |
| 3 | 2 | 3ad2ant1 1042 | . . . . . . 7 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑆:(0..^(♯‘𝑆))⟶𝐴) |
| 4 | 3 | ad2antrr 488 | . . . . . 6 ⊢ ((((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐹))) → 𝑆:(0..^(♯‘𝑆))⟶𝐴) |
| 5 | simplr 528 | . . . . . . . 8 ⊢ ((((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐹))) → (𝐹..^𝐿) ⊆ dom 𝑆) | |
| 6 | simpr 110 | . . . . . . . . 9 ⊢ ((((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐹))) → 𝑥 ∈ (0..^(𝐿 − 𝐹))) | |
| 7 | simpll3 1062 | . . . . . . . . 9 ⊢ ((((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐹))) → 𝐿 ∈ ℤ) | |
| 8 | simpll2 1061 | . . . . . . . . 9 ⊢ ((((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐹))) → 𝐹 ∈ ℤ) | |
| 9 | fzoaddel2 10391 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (0..^(𝐿 − 𝐹)) ∧ 𝐿 ∈ ℤ ∧ 𝐹 ∈ ℤ) → (𝑥 + 𝐹) ∈ (𝐹..^𝐿)) | |
| 10 | 6, 7, 8, 9 | syl3anc 1271 | . . . . . . . 8 ⊢ ((((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐹))) → (𝑥 + 𝐹) ∈ (𝐹..^𝐿)) |
| 11 | 5, 10 | sseldd 3225 | . . . . . . 7 ⊢ ((((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐹))) → (𝑥 + 𝐹) ∈ dom 𝑆) |
| 12 | 4 | fdmd 5479 | . . . . . . 7 ⊢ ((((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐹))) → dom 𝑆 = (0..^(♯‘𝑆))) |
| 13 | 11, 12 | eleqtrd 2308 | . . . . . 6 ⊢ ((((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐹))) → (𝑥 + 𝐹) ∈ (0..^(♯‘𝑆))) |
| 14 | 4, 13 | ffvelcdmd 5770 | . . . . 5 ⊢ ((((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿 − 𝐹))) → (𝑆‘(𝑥 + 𝐹)) ∈ 𝐴) |
| 15 | 14 | fmpttd 5789 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))):(0..^(𝐿 − 𝐹))⟶𝐴) |
| 16 | simpl3 1026 | . . . . 5 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → 𝐿 ∈ ℤ) | |
| 17 | simpl2 1025 | . . . . 5 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → 𝐹 ∈ ℤ) | |
| 18 | 16, 17 | zsubcld 9570 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝐿 − 𝐹) ∈ ℤ) |
| 19 | iswrdiz 11073 | . . . 4 ⊢ (((𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))):(0..^(𝐿 − 𝐹))⟶𝐴 ∧ (𝐿 − 𝐹) ∈ ℤ) → (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ Word 𝐴) | |
| 20 | 15, 18, 19 | syl2anc 411 | . . 3 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ Word 𝐴) |
| 21 | wrd0 11091 | . . . 4 ⊢ ∅ ∈ Word 𝐴 | |
| 22 | 21 | a1i 9 | . . 3 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ ¬ (𝐹..^𝐿) ⊆ dom 𝑆) → ∅ ∈ Word 𝐴) |
| 23 | fzowrddc 11174 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → DECID (𝐹..^𝐿) ⊆ dom 𝑆) | |
| 24 | 20, 22, 23 | ifcldadc 3632 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ Word 𝐴) |
| 25 | 1, 24 | eqeltrd 2306 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) ∈ Word 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 1002 ∈ wcel 2200 ⊆ wss 3197 ∅c0 3491 ifcif 3602 〈cop 3669 ↦ cmpt 4144 dom cdm 4718 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 0cc0 7995 + caddc 7998 − cmin 8313 ℤcz 9442 ..^cfzo 10334 ♯chash 10992 Word cword 11066 substr csubstr 11172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-1o 6560 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 df-ihash 10993 df-word 11067 df-substr 11173 |
| This theorem is referenced by: swrdf 11182 swrdspsleq 11194 swrds1 11195 ccatswrd 11197 swrdccat2 11198 pfxclg 11205 ccatpfx 11228 swrdswrd 11232 pfxswrd 11233 lenrevpfxcctswrd 11239 pfxccatin12 11260 swrdccat 11262 swrdccat3blem 11266 |
| Copyright terms: Public domain | W3C validator |