ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdclg GIF version

Theorem swrdclg 11177
Description: Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrdclg ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)

Proof of Theorem swrdclg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 swrdval 11175 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
2 wrdf 11072 . . . . . . . 8 (𝑆 ∈ Word 𝐴𝑆:(0..^(♯‘𝑆))⟶𝐴)
323ad2ant1 1042 . . . . . . 7 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
43ad2antrr 488 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
5 simplr 528 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝐹..^𝐿) ⊆ dom 𝑆)
6 simpr 110 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝑥 ∈ (0..^(𝐿𝐹)))
7 simpll3 1062 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝐿 ∈ ℤ)
8 simpll2 1061 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝐹 ∈ ℤ)
9 fzoaddel2 10391 . . . . . . . . 9 ((𝑥 ∈ (0..^(𝐿𝐹)) ∧ 𝐿 ∈ ℤ ∧ 𝐹 ∈ ℤ) → (𝑥 + 𝐹) ∈ (𝐹..^𝐿))
106, 7, 8, 9syl3anc 1271 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ (𝐹..^𝐿))
115, 10sseldd 3225 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ dom 𝑆)
124fdmd 5479 . . . . . . 7 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → dom 𝑆 = (0..^(♯‘𝑆)))
1311, 12eleqtrd 2308 . . . . . 6 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ (0..^(♯‘𝑆)))
144, 13ffvelcdmd 5770 . . . . 5 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑆‘(𝑥 + 𝐹)) ∈ 𝐴)
1514fmpttd 5789 . . . 4 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))):(0..^(𝐿𝐹))⟶𝐴)
16 simpl3 1026 . . . . 5 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → 𝐿 ∈ ℤ)
17 simpl2 1025 . . . . 5 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → 𝐹 ∈ ℤ)
1816, 17zsubcld 9570 . . . 4 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝐿𝐹) ∈ ℤ)
19 iswrdiz 11073 . . . 4 (((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))):(0..^(𝐿𝐹))⟶𝐴 ∧ (𝐿𝐹) ∈ ℤ) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ Word 𝐴)
2015, 18, 19syl2anc 411 . . 3 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ Word 𝐴)
21 wrd0 11091 . . . 4 ∅ ∈ Word 𝐴
2221a1i 9 . . 3 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ ¬ (𝐹..^𝐿) ⊆ dom 𝑆) → ∅ ∈ Word 𝐴)
23 fzowrddc 11174 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → DECID (𝐹..^𝐿) ⊆ dom 𝑆)
2420, 22, 23ifcldadc 3632 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ Word 𝐴)
251, 24eqeltrd 2306 1 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 1002  wcel 2200  wss 3197  c0 3491  ifcif 3602  cop 3669  cmpt 4144  dom cdm 4718  wf 5313  cfv 5317  (class class class)co 6000  0cc0 7995   + caddc 7998  cmin 8313  cz 9442  ..^cfzo 10334  chash 10992  Word cword 11066   substr csubstr 11172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-substr 11173
This theorem is referenced by:  swrdf  11182  swrdspsleq  11194  swrds1  11195  ccatswrd  11197  swrdccat2  11198  pfxclg  11205  ccatpfx  11228  swrdswrd  11232  pfxswrd  11233  lenrevpfxcctswrd  11239  pfxccatin12  11260  swrdccat  11262  swrdccat3blem  11266
  Copyright terms: Public domain W3C validator