ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sq11d GIF version

Theorem sq11d 10718
Description: The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
resqcld.1 (𝜑𝐴 ∈ ℝ)
lt2sqd.2 (𝜑𝐵 ∈ ℝ)
lt2sqd.3 (𝜑 → 0 ≤ 𝐴)
lt2sqd.4 (𝜑 → 0 ≤ 𝐵)
sq11d.5 (𝜑 → (𝐴↑2) = (𝐵↑2))
Assertion
Ref Expression
sq11d (𝜑𝐴 = 𝐵)

Proof of Theorem sq11d
StepHypRef Expression
1 sq11d.5 . 2 (𝜑 → (𝐴↑2) = (𝐵↑2))
2 resqcld.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 lt2sqd.3 . . 3 (𝜑 → 0 ≤ 𝐴)
4 lt2sqd.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 lt2sqd.4 . . 3 (𝜑 → 0 ≤ 𝐵)
6 sq11 10624 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
72, 3, 4, 5, 6syl22anc 1250 . 2 (𝜑 → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))
81, 7mpbid 147 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2160   class class class wbr 4018  (class class class)co 5896  cr 7840  0cc0 7841  cle 8023  2c2 9000  cexp 10550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-n0 9207  df-z 9284  df-uz 9559  df-seqfrec 10477  df-exp 10551
This theorem is referenced by:  rsqrmo  11068  sqrtmul  11076  sqrtsq  11085  nn0sqrtelqelz  12238  rpcxpsqrt  14802
  Copyright terms: Public domain W3C validator