| Step | Hyp | Ref
| Expression |
| 1 | | 3orcomb 990 |
. . . 4
⊢ ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿 ∨ 𝐿 ≤ 𝐹)) |
| 2 | | df-3or 982 |
. . . 4
⊢ ((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿 ∨ 𝐿 ≤ 𝐹) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿 ≤ 𝐹)) |
| 3 | | orcom 730 |
. . . 4
⊢ (((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∨ 𝐿 ≤ 𝐹) ↔ (𝐿 ≤ 𝐹 ∨ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿))) |
| 4 | 1, 2, 3 | 3bitri 206 |
. . 3
⊢ ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ (𝐿 ≤ 𝐹 ∨ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿))) |
| 5 | | simp3 1002 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℤ) |
| 6 | | simp2 1001 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 ∈ ℤ) |
| 7 | | zdcle 9449 |
. . . . 5
⊢ ((𝐿 ∈ ℤ ∧ 𝐹 ∈ ℤ) →
DECID 𝐿 ≤
𝐹) |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . 4
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → DECID
𝐿 ≤ 𝐹) |
| 9 | | pm5.63dc 949 |
. . . 4
⊢
(DECID 𝐿 ≤ 𝐹 → ((𝐿 ≤ 𝐹 ∨ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) ↔ (𝐿 ≤ 𝐹 ∨ (¬ 𝐿 ≤ 𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿))))) |
| 10 | 8, 9 | syl 14 |
. . 3
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐿 ≤ 𝐹 ∨ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) ↔ (𝐿 ≤ 𝐹 ∨ (¬ 𝐿 ≤ 𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿))))) |
| 11 | 4, 10 | bitrid 192 |
. 2
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ (𝐿 ≤ 𝐹 ∨ (¬ 𝐿 ≤ 𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿))))) |
| 12 | | swrdlend 11111 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
| 13 | 12 | com12 30 |
. . . 4
⊢ (𝐿 ≤ 𝐹 → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
| 14 | | swrdval 11101 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) |
| 15 | 14 | adantl 277 |
. . . . . . 7
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) |
| 16 | | 0z 9383 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℤ |
| 17 | | zltnle 9418 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ ℤ ∧ 0 ∈
ℤ) → (𝐹 < 0
↔ ¬ 0 ≤ 𝐹)) |
| 18 | 16, 17 | mpan2 425 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ ℤ → (𝐹 < 0 ↔ ¬ 0 ≤
𝐹)) |
| 19 | 18 | 3ad2ant2 1022 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹)) |
| 20 | | lencl 10998 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈
ℕ0) |
| 21 | 20 | 3ad2ant1 1021 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (♯‘𝑊) ∈
ℕ0) |
| 22 | 21 | nn0zd 9493 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (♯‘𝑊) ∈
ℤ) |
| 23 | | zltnle 9418 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘𝑊)
∈ ℤ ∧ 𝐿
∈ ℤ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊))) |
| 24 | 22, 5, 23 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
((♯‘𝑊) <
𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊))) |
| 25 | 19, 24 | orbi12d 795 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))) |
| 26 | 25 | biimpcd 159 |
. . . . . . . . . . . . 13
⊢ ((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))) |
| 27 | 26 | adantr 276 |
. . . . . . . . . . . 12
⊢ (((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))) |
| 28 | 27 | imp 124 |
. . . . . . . . . . 11
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))) |
| 29 | | pm3.14 755 |
. . . . . . . . . . 11
⊢ ((¬ 0
≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → ¬ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊))) |
| 30 | 28, 29 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊))) |
| 31 | | 3simpc 999 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
| 32 | 20 | nn0zd 9493 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
| 33 | 32, 16 | jctil 312 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ Word 𝑉 → (0 ∈ ℤ ∧
(♯‘𝑊) ∈
ℤ)) |
| 34 | 33 | 3ad2ant1 1021 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ∈ ℤ
∧ (♯‘𝑊)
∈ ℤ)) |
| 35 | | zltnle 9418 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹)) |
| 36 | 35 | 3adant1 1018 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹)) |
| 37 | 36 | biimprcd 160 |
. . . . . . . . . . . . 13
⊢ (¬
𝐿 ≤ 𝐹 → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿)) |
| 38 | 37 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿)) |
| 39 | 38 | imp 124 |
. . . . . . . . . . 11
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐹 < 𝐿) |
| 40 | | ssfzo12bi 10354 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (0 ∈
ℤ ∧ (♯‘𝑊) ∈ ℤ) ∧ 𝐹 < 𝐿) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊)))) |
| 41 | 31, 34, 39, 40 | syl2an23an 1312 |
. . . . . . . . . 10
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊)))) |
| 42 | 30, 41 | mtbird 675 |
. . . . . . . . 9
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))) |
| 43 | | wrddm 11002 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 44 | 43 | sseq2d 3223 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ Word 𝑉 → ((𝐹..^𝐿) ⊆ dom 𝑊 ↔ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
| 45 | 44 | notbid 669 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ Word 𝑉 → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
| 46 | 45 | 3ad2ant1 1021 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
| 47 | 46 | adantl 277 |
. . . . . . . . 9
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
| 48 | 42, 47 | mpbird 167 |
. . . . . . . 8
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom 𝑊) |
| 49 | 48 | iffalsed 3581 |
. . . . . . 7
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = ∅) |
| 50 | 15, 49 | eqtrd 2238 |
. . . . . 6
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅) |
| 51 | 50 | exp31 364 |
. . . . 5
⊢ ((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) → (¬ 𝐿 ≤ 𝐹 → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅))) |
| 52 | 51 | impcom 125 |
. . . 4
⊢ ((¬
𝐿 ≤ 𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
| 53 | 13, 52 | jaoi 718 |
. . 3
⊢ ((𝐿 ≤ 𝐹 ∨ (¬ 𝐿 ≤ 𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿))) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
| 54 | 53 | com12 30 |
. 2
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐿 ≤ 𝐹 ∨ (¬ 𝐿 ≤ 𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿))) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
| 55 | 11, 54 | sylbid 150 |
1
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |