![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zncrng2 | GIF version |
Description: Making a commutative ring as a quotient of ℤ and 𝑛ℤ. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znval.s | ⊢ 𝑆 = (RSpan‘ℤring) |
znval.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
Ref | Expression |
---|---|
zncrng2 | ⊢ (𝑁 ∈ ℤ → 𝑈 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringcrng 13916 | . 2 ⊢ ℤring ∈ CRing | |
2 | znval.s | . . 3 ⊢ 𝑆 = (RSpan‘ℤring) | |
3 | 2 | znlidl 13955 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) |
4 | znval.u | . . 3 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
5 | eqid 2189 | . . 3 ⊢ (LIdeal‘ℤring) = (LIdeal‘ℤring) | |
6 | 4, 5 | quscrng 13872 | . 2 ⊢ ((ℤring ∈ CRing ∧ (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) → 𝑈 ∈ CRing) |
7 | 1, 3, 6 | sylancr 414 | 1 ⊢ (𝑁 ∈ ℤ → 𝑈 ∈ CRing) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 {csn 3610 ‘cfv 5238 (class class class)co 5900 ℤcz 9288 /s cqus 12788 ~QG cqg 13133 CRingccrg 13376 LIdealclidl 13808 RSpancrsp 13809 ℤringczring 13914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-mulrcl 7945 ax-addcom 7946 ax-mulcom 7947 ax-addass 7948 ax-mulass 7949 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-1rid 7953 ax-0id 7954 ax-rnegex 7955 ax-precex 7956 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-apti 7961 ax-pre-ltadd 7962 ax-pre-mulgt0 7963 ax-addf 7968 ax-mulf 7969 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-tp 3618 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-tpos 6274 df-er 6563 df-ec 6565 df-qs 6569 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-reap 8567 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-5 9016 df-6 9017 df-7 9018 df-8 9019 df-9 9020 df-n0 9212 df-z 9289 df-dec 9420 df-uz 9564 df-fz 10045 df-cj 10892 df-struct 12525 df-ndx 12526 df-slot 12527 df-base 12529 df-sets 12530 df-iress 12531 df-plusg 12613 df-mulr 12614 df-starv 12615 df-sca 12616 df-vsca 12617 df-ip 12618 df-0g 12774 df-iimas 12790 df-qus 12791 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-grp 12971 df-minusg 12972 df-sbg 12973 df-subg 13134 df-nsg 13135 df-eqg 13136 df-cmn 13250 df-abl 13251 df-mgp 13300 df-rng 13312 df-ur 13339 df-srg 13343 df-ring 13377 df-cring 13378 df-oppr 13443 df-subrg 13591 df-lmod 13630 df-lssm 13694 df-lsp 13728 df-sra 13776 df-rgmod 13777 df-lidl 13810 df-rsp 13811 df-2idl 13841 df-icnfld 13890 df-zring 13915 |
This theorem is referenced by: zncrng 13965 |
Copyright terms: Public domain | W3C validator |