MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0e0icopnf Structured version   Visualization version   GIF version

Theorem 0e0icopnf 13495
Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0e0icopnf 0 ∈ (0[,)+∞)

Proof of Theorem 0e0icopnf
StepHypRef Expression
1 0re 11261 . 2 0 ∈ ℝ
2 0le0 12365 . 2 0 ≤ 0
3 elrege0 13491 . 2 (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0))
41, 2, 3mpbir2an 711 1 0 ∈ (0[,)+∞)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  +∞cpnf 11290  cle 11294  [,)cico 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-addrcl 11214  ax-rnegex 11224  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ico 13390
This theorem is referenced by:  fsumge0  15828  rege0subm  21459  rge0srg  21474  itg2cnlem1  25811  ibladdlem  25870  itgaddlem1  25873  iblabslem  25878  iblabs  25879  iblmulc2  25881  itgmulc2lem1  25882  bddmulibl  25889  itggt0  25894  itgcn  25895  cxpcn3  26806  rlimcnp3  27025  efrlim  27027  efrlimOLD  27028  fsumrp0cl  33009  xrge0slmod  33356  esumpfinvallem  34055  ibladdnclem  37663  itgaddnclem1  37665  iblabsnclem  37670  iblabsnc  37671  iblmulc2nc  37672  itgmulc2nclem1  37673  itggt0cn  37677  ftc1anclem8  37687  sge0z  46331  sge0tsms  46336  hoidmvcl  46538  dig0  48456
  Copyright terms: Public domain W3C validator