| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0e0icopnf | Structured version Visualization version GIF version | ||
| Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0e0icopnf | ⊢ 0 ∈ (0[,)+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11230 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 0le0 12334 | . 2 ⊢ 0 ≤ 0 | |
| 3 | elrege0 13461 | . 2 ⊢ (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 0 ∈ (0[,)+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 class class class wbr 5117 (class class class)co 7400 ℝcr 11121 0cc0 11122 +∞cpnf 11259 ≤ cle 11263 [,)cico 13356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-addrcl 11183 ax-rnegex 11193 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-ico 13360 |
| This theorem is referenced by: fsumge0 15800 rege0subm 21378 rge0srg 21393 itg2cnlem1 25701 ibladdlem 25760 itgaddlem1 25763 iblabslem 25768 iblabs 25769 iblmulc2 25771 itgmulc2lem1 25772 bddmulibl 25779 itggt0 25784 itgcn 25785 cxpcn3 26696 rlimcnp3 26915 efrlim 26917 efrlimOLD 26918 fsumrp0cl 32954 xrge0slmod 33300 esumpfinvallem 34034 ibladdnclem 37629 itgaddnclem1 37631 iblabsnclem 37636 iblabsnc 37637 iblmulc2nc 37638 itgmulc2nclem1 37639 itggt0cn 37643 ftc1anclem8 37653 sge0z 46340 sge0tsms 46345 hoidmvcl 46547 dig0 48480 |
| Copyright terms: Public domain | W3C validator |