| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0e0icopnf | Structured version Visualization version GIF version | ||
| Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0e0icopnf | ⊢ 0 ∈ (0[,)+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11114 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 0le0 12226 | . 2 ⊢ 0 ≤ 0 | |
| 3 | elrege0 13354 | . 2 ⊢ (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 0 ∈ (0[,)+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 +∞cpnf 11143 ≤ cle 11147 [,)cico 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ico 13251 |
| This theorem is referenced by: fsumge0 15702 rege0subm 21360 rge0srg 21375 itg2cnlem1 25689 ibladdlem 25748 itgaddlem1 25751 iblabslem 25756 iblabs 25757 iblmulc2 25759 itgmulc2lem1 25760 bddmulibl 25767 itggt0 25772 itgcn 25773 cxpcn3 26685 rlimcnp3 26904 efrlim 26906 efrlimOLD 26907 fsumrp0cl 33002 xrge0slmod 33313 esumpfinvallem 34087 ibladdnclem 37726 itgaddnclem1 37728 iblabsnclem 37733 iblabsnc 37734 iblmulc2nc 37735 itgmulc2nclem1 37736 itggt0cn 37740 ftc1anclem8 37750 sge0z 46483 sge0tsms 46488 hoidmvcl 46690 dig0 48717 |
| Copyright terms: Public domain | W3C validator |