Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0e0icopnf | Structured version Visualization version GIF version |
Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0e0icopnf | ⊢ 0 ∈ (0[,)+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10908 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0le0 12004 | . 2 ⊢ 0 ≤ 0 | |
3 | elrege0 13115 | . 2 ⊢ (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0)) | |
4 | 1, 2, 3 | mpbir2an 707 | 1 ⊢ 0 ∈ (0[,)+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ≤ cle 10941 [,)cico 13010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ico 13014 |
This theorem is referenced by: fsumge0 15435 rege0subm 20566 rge0srg 20581 itg2cnlem1 24831 ibladdlem 24889 itgaddlem1 24892 iblabslem 24897 iblabs 24898 iblmulc2 24900 itgmulc2lem1 24901 bddmulibl 24908 itggt0 24913 itgcn 24914 cxpcn3 25806 rlimcnp3 26022 efrlim 26024 fsumrp0cl 31206 xrge0slmod 31450 esumpfinvallem 31942 ibladdnclem 35760 itgaddnclem1 35762 iblabsnclem 35767 iblabsnc 35768 iblmulc2nc 35769 itgmulc2nclem1 35770 itggt0cn 35774 ftc1anclem8 35784 sge0z 43803 sge0tsms 43808 hoidmvcl 44010 dig0 45840 |
Copyright terms: Public domain | W3C validator |