MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0e0icopnf Structured version   Visualization version   GIF version

Theorem 0e0icopnf 13475
Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0e0icopnf 0 ∈ (0[,)+∞)

Proof of Theorem 0e0icopnf
StepHypRef Expression
1 0re 11237 . 2 0 ∈ ℝ
2 0le0 12341 . 2 0 ≤ 0
3 elrege0 13471 . 2 (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0))
41, 2, 3mpbir2an 711 1 0 ∈ (0[,)+∞)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108   class class class wbr 5119  (class class class)co 7405  cr 11128  0cc0 11129  +∞cpnf 11266  cle 11270  [,)cico 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-addrcl 11190  ax-rnegex 11200  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-ico 13368
This theorem is referenced by:  fsumge0  15811  rege0subm  21391  rge0srg  21406  itg2cnlem1  25714  ibladdlem  25773  itgaddlem1  25776  iblabslem  25781  iblabs  25782  iblmulc2  25784  itgmulc2lem1  25785  bddmulibl  25792  itggt0  25797  itgcn  25798  cxpcn3  26710  rlimcnp3  26929  efrlim  26931  efrlimOLD  26932  fsumrp0cl  33016  xrge0slmod  33363  esumpfinvallem  34105  ibladdnclem  37700  itgaddnclem1  37702  iblabsnclem  37707  iblabsnc  37708  iblmulc2nc  37709  itgmulc2nclem1  37710  itggt0cn  37714  ftc1anclem8  37724  sge0z  46404  sge0tsms  46409  hoidmvcl  46611  dig0  48586
  Copyright terms: Public domain W3C validator