![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0e0icopnf | Structured version Visualization version GIF version |
Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0e0icopnf | ⊢ 0 ∈ (0[,)+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11241 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0le0 12338 | . 2 ⊢ 0 ≤ 0 | |
3 | elrege0 13458 | . 2 ⊢ (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ 0 ∈ (0[,)+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 class class class wbr 5143 (class class class)co 7415 ℝcr 11132 0cc0 11133 +∞cpnf 11270 ≤ cle 11274 [,)cico 13353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-addrcl 11194 ax-rnegex 11204 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-ico 13357 |
This theorem is referenced by: fsumge0 15768 rege0subm 21350 rge0srg 21365 itg2cnlem1 25685 ibladdlem 25743 itgaddlem1 25746 iblabslem 25751 iblabs 25752 iblmulc2 25754 itgmulc2lem1 25755 bddmulibl 25762 itggt0 25767 itgcn 25768 cxpcn3 26677 rlimcnp3 26893 efrlim 26895 efrlimOLD 26896 fsumrp0cl 32746 xrge0slmod 33055 esumpfinvallem 33688 ibladdnclem 37144 itgaddnclem1 37146 iblabsnclem 37151 iblabsnc 37152 iblmulc2nc 37153 itgmulc2nclem1 37154 itggt0cn 37158 ftc1anclem8 37168 sge0z 45754 sge0tsms 45759 hoidmvcl 45961 dig0 47670 |
Copyright terms: Public domain | W3C validator |