| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0e0icopnf | Structured version Visualization version GIF version | ||
| Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0e0icopnf | ⊢ 0 ∈ (0[,)+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11176 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 0le0 12287 | . 2 ⊢ 0 ≤ 0 | |
| 3 | elrege0 13415 | . 2 ⊢ (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 0 ∈ (0[,)+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 +∞cpnf 11205 ≤ cle 11209 [,)cico 13308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ico 13312 |
| This theorem is referenced by: fsumge0 15761 rege0subm 21340 rge0srg 21355 itg2cnlem1 25662 ibladdlem 25721 itgaddlem1 25724 iblabslem 25729 iblabs 25730 iblmulc2 25732 itgmulc2lem1 25733 bddmulibl 25740 itggt0 25745 itgcn 25746 cxpcn3 26658 rlimcnp3 26877 efrlim 26879 efrlimOLD 26880 fsumrp0cl 32962 xrge0slmod 33319 esumpfinvallem 34064 ibladdnclem 37670 itgaddnclem1 37672 iblabsnclem 37677 iblabsnc 37678 iblmulc2nc 37679 itgmulc2nclem1 37680 itggt0cn 37684 ftc1anclem8 37694 sge0z 46373 sge0tsms 46378 hoidmvcl 46580 dig0 48595 |
| Copyright terms: Public domain | W3C validator |