MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0e0icopnf Structured version   Visualization version   GIF version

Theorem 0e0icopnf 12489
Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0e0icopnf 0 ∈ (0[,)+∞)

Proof of Theorem 0e0icopnf
StepHypRef Expression
1 0re 10242 . 2 0 ∈ ℝ
2 0le0 11312 . 2 0 ≤ 0
3 elrege0 12485 . 2 (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0))
41, 2, 3mpbir2an 690 1 0 ∈ (0[,)+∞)
Colors of variables: wff setvar class
Syntax hints:  wcel 2145   class class class wbr 4786  (class class class)co 6793  cr 10137  0cc0 10138  +∞cpnf 10273  cle 10277  [,)cico 12382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-i2m1 10206  ax-1ne0 10207  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-ico 12386
This theorem is referenced by:  fsumge0  14734  fprodge0  14930  rege0subm  20017  rge0srg  20032  itg2cnlem1  23748  ibladdlem  23806  itgaddlem1  23809  iblabslem  23814  iblabs  23815  iblmulc2  23817  itgmulc2lem1  23818  bddmulibl  23825  itggt0  23828  itgcn  23829  cxpcn3  24710  rlimcnp3  24915  efrlim  24917  fsumrp0cl  30035  xrge0slmod  30184  esumpfinvallem  30476  ibladdnclem  33798  itgaddnclem1  33800  iblabsnclem  33805  iblabsnc  33806  iblmulc2nc  33807  itgmulc2nclem1  33808  itggt0cn  33814  ftc1anclem8  33824  sge0z  41109  sge0tsms  41114  hoidmvcl  41316  dig0  42928
  Copyright terms: Public domain W3C validator