![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0e0icopnf | Structured version Visualization version GIF version |
Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0e0icopnf | ⊢ 0 ∈ (0[,)+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11261 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0le0 12365 | . 2 ⊢ 0 ≤ 0 | |
3 | elrege0 13491 | . 2 ⊢ (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0)) | |
4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 0 ∈ (0[,)+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 +∞cpnf 11290 ≤ cle 11294 [,)cico 13386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-ico 13390 |
This theorem is referenced by: fsumge0 15828 rege0subm 21459 rge0srg 21474 itg2cnlem1 25811 ibladdlem 25870 itgaddlem1 25873 iblabslem 25878 iblabs 25879 iblmulc2 25881 itgmulc2lem1 25882 bddmulibl 25889 itggt0 25894 itgcn 25895 cxpcn3 26806 rlimcnp3 27025 efrlim 27027 efrlimOLD 27028 fsumrp0cl 33009 xrge0slmod 33356 esumpfinvallem 34055 ibladdnclem 37663 itgaddnclem1 37665 iblabsnclem 37670 iblabsnc 37671 iblmulc2nc 37672 itgmulc2nclem1 37673 itggt0cn 37677 ftc1anclem8 37687 sge0z 46331 sge0tsms 46336 hoidmvcl 46538 dig0 48456 |
Copyright terms: Public domain | W3C validator |