![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0e0icopnf | Structured version Visualization version GIF version |
Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0e0icopnf | ⊢ 0 ∈ (0[,)+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11292 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0le0 12394 | . 2 ⊢ 0 ≤ 0 | |
3 | elrege0 13514 | . 2 ⊢ (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ 0 ∈ (0[,)+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ≤ cle 11325 [,)cico 13409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ico 13413 |
This theorem is referenced by: fsumge0 15843 rege0subm 21464 rge0srg 21479 itg2cnlem1 25816 ibladdlem 25875 itgaddlem1 25878 iblabslem 25883 iblabs 25884 iblmulc2 25886 itgmulc2lem1 25887 bddmulibl 25894 itggt0 25899 itgcn 25900 cxpcn3 26809 rlimcnp3 27028 efrlim 27030 efrlimOLD 27031 fsumrp0cl 33007 xrge0slmod 33341 esumpfinvallem 34038 ibladdnclem 37636 itgaddnclem1 37638 iblabsnclem 37643 iblabsnc 37644 iblmulc2nc 37645 itgmulc2nclem1 37646 itggt0cn 37650 ftc1anclem8 37660 sge0z 46296 sge0tsms 46301 hoidmvcl 46503 dig0 48340 |
Copyright terms: Public domain | W3C validator |