MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0e0icopnf Structured version   Visualization version   GIF version

Theorem 0e0icopnf 13190
Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0e0icopnf 0 ∈ (0[,)+∞)

Proof of Theorem 0e0icopnf
StepHypRef Expression
1 0re 10977 . 2 0 ∈ ℝ
2 0le0 12074 . 2 0 ≤ 0
3 elrege0 13186 . 2 (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0))
41, 2, 3mpbir2an 708 1 0 ∈ (0[,)+∞)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  +∞cpnf 11006  cle 11010  [,)cico 13081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-addrcl 10932  ax-rnegex 10942  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085
This theorem is referenced by:  fsumge0  15507  rege0subm  20654  rge0srg  20669  itg2cnlem1  24926  ibladdlem  24984  itgaddlem1  24987  iblabslem  24992  iblabs  24993  iblmulc2  24995  itgmulc2lem1  24996  bddmulibl  25003  itggt0  25008  itgcn  25009  cxpcn3  25901  rlimcnp3  26117  efrlim  26119  fsumrp0cl  31304  xrge0slmod  31548  esumpfinvallem  32042  ibladdnclem  35833  itgaddnclem1  35835  iblabsnclem  35840  iblabsnc  35841  iblmulc2nc  35842  itgmulc2nclem1  35843  itggt0cn  35847  ftc1anclem8  35857  sge0z  43913  sge0tsms  43918  hoidmvcl  44120  dig0  45952
  Copyright terms: Public domain W3C validator