![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvcl | Structured version Visualization version GIF version |
Description: The dimensional volume of a multidimensional half-open interval is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoidmvcl.l | ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
hoidmvcl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoidmvcl.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
hoidmvcl.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
Ref | Expression |
---|---|
hoidmvcl | ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidmvcl.l | . . 3 ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
2 | hoidmvcl.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
3 | hoidmvcl.b | . . 3 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
4 | hoidmvcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
5 | 1, 2, 3, 4 | hoidmvval 46533 | . 2 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
6 | 0e0icopnf 13495 | . . . 4 ⊢ 0 ∈ (0[,)+∞) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
8 | 0xr 11306 | . . . . 5 ⊢ 0 ∈ ℝ* | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ*) |
10 | pnfxr 11313 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → +∞ ∈ ℝ*) |
12 | 2 | ffvelcdmda 7104 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
13 | 3 | ffvelcdmda 7104 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
14 | volico 45939 | . . . . . . . 8 ⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) | |
15 | 12, 13, 14 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
16 | 13, 12 | resubcld 11689 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈ ℝ) |
17 | 0red 11262 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ∈ ℝ) | |
18 | 16, 17 | ifcld 4577 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0) ∈ ℝ) |
19 | 15, 18 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
20 | 4, 19 | fprodrecl 15986 | . . . . 5 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
21 | 20 | rexrd 11309 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ*) |
22 | nfv 1912 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
23 | 13 | rexrd 11309 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ*) |
24 | icombl 25613 | . . . . . . 7 ⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ*) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol) | |
25 | 12, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol) |
26 | volge0 45917 | . . . . . 6 ⊢ (((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol → 0 ≤ (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ≤ (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
28 | 22, 4, 19, 27 | fprodge0 16026 | . . . 4 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
29 | 20 | ltpnfd 13161 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) < +∞) |
30 | 9, 11, 21, 28, 29 | elicod 13434 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ (0[,)+∞)) |
31 | 7, 30 | ifcld 4577 | . 2 ⊢ (𝜑 → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ (0[,)+∞)) |
32 | 5, 31 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∅c0 4339 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ↑m cmap 8865 Fincfn 8984 ℝcr 11152 0cc0 11153 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 − cmin 11490 [,)cico 13386 ∏cprod 15936 volcvol 25512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-sum 15720 df-prod 15937 df-rest 17469 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-top 22916 df-topon 22933 df-bases 22969 df-cmp 23411 df-ovol 25513 df-vol 25514 |
This theorem is referenced by: sge0hsphoire 46545 hoidmv1le 46550 hoidmvlelem1 46551 hoidmvlelem2 46552 hoidmvlelem3 46553 hoidmvlelem4 46554 hoidmvlelem5 46555 hoidmvle 46556 ovnhoilem2 46558 ovnhoi 46559 ovnlecvr2 46566 hspmbllem1 46582 hspmbllem2 46583 |
Copyright terms: Public domain | W3C validator |