![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvcl | Structured version Visualization version GIF version |
Description: The dimensional volume of a multidimensional half-open interval is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoidmvcl.l | ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
hoidmvcl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoidmvcl.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
hoidmvcl.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
Ref | Expression |
---|---|
hoidmvcl | ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidmvcl.l | . . 3 ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
2 | hoidmvcl.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
3 | hoidmvcl.b | . . 3 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
4 | hoidmvcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
5 | 1, 2, 3, 4 | hoidmvval 46498 | . 2 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
6 | 0e0icopnf 13518 | . . . 4 ⊢ 0 ∈ (0[,)+∞) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
8 | 0xr 11337 | . . . . 5 ⊢ 0 ∈ ℝ* | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ*) |
10 | pnfxr 11344 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → +∞ ∈ ℝ*) |
12 | 2 | ffvelcdmda 7118 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
13 | 3 | ffvelcdmda 7118 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
14 | volico 45904 | . . . . . . . 8 ⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) | |
15 | 12, 13, 14 | syl2anc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
16 | 13, 12 | resubcld 11718 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈ ℝ) |
17 | 0red 11293 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ∈ ℝ) | |
18 | 16, 17 | ifcld 4594 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0) ∈ ℝ) |
19 | 15, 18 | eqeltrd 2844 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
20 | 4, 19 | fprodrecl 16001 | . . . . 5 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
21 | 20 | rexrd 11340 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ*) |
22 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
23 | 13 | rexrd 11340 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ*) |
24 | icombl 25618 | . . . . . . 7 ⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ*) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol) | |
25 | 12, 23, 24 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol) |
26 | volge0 45882 | . . . . . 6 ⊢ (((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol → 0 ≤ (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ≤ (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
28 | 22, 4, 19, 27 | fprodge0 16041 | . . . 4 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
29 | 20 | ltpnfd 13184 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) < +∞) |
30 | 9, 11, 21, 28, 29 | elicod 13457 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ (0[,)+∞)) |
31 | 7, 30 | ifcld 4594 | . 2 ⊢ (𝜑 → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ (0[,)+∞)) |
32 | 5, 31 | eqeltrd 2844 | 1 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ↑m cmap 8884 Fincfn 9003 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 − cmin 11520 [,)cico 13409 ∏cprod 15951 volcvol 25517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-prod 15952 df-rest 17482 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-bases 22974 df-cmp 23416 df-ovol 25518 df-vol 25519 |
This theorem is referenced by: sge0hsphoire 46510 hoidmv1le 46515 hoidmvlelem1 46516 hoidmvlelem2 46517 hoidmvlelem3 46518 hoidmvlelem4 46519 hoidmvlelem5 46520 hoidmvle 46521 ovnhoilem2 46523 ovnhoi 46524 ovnlecvr2 46531 hspmbllem1 46547 hspmbllem2 46548 |
Copyright terms: Public domain | W3C validator |