![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvcl | Structured version Visualization version GIF version |
Description: The dimensional volume of a multidimensional half-open interval is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoidmvcl.l | β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) |
hoidmvcl.x | β’ (π β π β Fin) |
hoidmvcl.a | β’ (π β π΄:πβΆβ) |
hoidmvcl.b | β’ (π β π΅:πβΆβ) |
Ref | Expression |
---|---|
hoidmvcl | β’ (π β (π΄(πΏβπ)π΅) β (0[,)+β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidmvcl.l | . . 3 β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) | |
2 | hoidmvcl.a | . . 3 β’ (π β π΄:πβΆβ) | |
3 | hoidmvcl.b | . . 3 β’ (π β π΅:πβΆβ) | |
4 | hoidmvcl.x | . . 3 β’ (π β π β Fin) | |
5 | 1, 2, 3, 4 | hoidmvval 45283 | . 2 β’ (π β (π΄(πΏβπ)π΅) = if(π = β , 0, βπ β π (volβ((π΄βπ)[,)(π΅βπ))))) |
6 | 0e0icopnf 13434 | . . . 4 β’ 0 β (0[,)+β) | |
7 | 6 | a1i 11 | . . 3 β’ (π β 0 β (0[,)+β)) |
8 | 0xr 11260 | . . . . 5 β’ 0 β β* | |
9 | 8 | a1i 11 | . . . 4 β’ (π β 0 β β*) |
10 | pnfxr 11267 | . . . . 5 β’ +β β β* | |
11 | 10 | a1i 11 | . . . 4 β’ (π β +β β β*) |
12 | 2 | ffvelcdmda 7086 | . . . . . . . 8 β’ ((π β§ π β π) β (π΄βπ) β β) |
13 | 3 | ffvelcdmda 7086 | . . . . . . . 8 β’ ((π β§ π β π) β (π΅βπ) β β) |
14 | volico 44689 | . . . . . . . 8 β’ (((π΄βπ) β β β§ (π΅βπ) β β) β (volβ((π΄βπ)[,)(π΅βπ))) = if((π΄βπ) < (π΅βπ), ((π΅βπ) β (π΄βπ)), 0)) | |
15 | 12, 13, 14 | syl2anc 584 | . . . . . . 7 β’ ((π β§ π β π) β (volβ((π΄βπ)[,)(π΅βπ))) = if((π΄βπ) < (π΅βπ), ((π΅βπ) β (π΄βπ)), 0)) |
16 | 13, 12 | resubcld 11641 | . . . . . . . 8 β’ ((π β§ π β π) β ((π΅βπ) β (π΄βπ)) β β) |
17 | 0red 11216 | . . . . . . . 8 β’ ((π β§ π β π) β 0 β β) | |
18 | 16, 17 | ifcld 4574 | . . . . . . 7 β’ ((π β§ π β π) β if((π΄βπ) < (π΅βπ), ((π΅βπ) β (π΄βπ)), 0) β β) |
19 | 15, 18 | eqeltrd 2833 | . . . . . 6 β’ ((π β§ π β π) β (volβ((π΄βπ)[,)(π΅βπ))) β β) |
20 | 4, 19 | fprodrecl 15896 | . . . . 5 β’ (π β βπ β π (volβ((π΄βπ)[,)(π΅βπ))) β β) |
21 | 20 | rexrd 11263 | . . . 4 β’ (π β βπ β π (volβ((π΄βπ)[,)(π΅βπ))) β β*) |
22 | nfv 1917 | . . . . 5 β’ β²ππ | |
23 | 13 | rexrd 11263 | . . . . . . 7 β’ ((π β§ π β π) β (π΅βπ) β β*) |
24 | icombl 25080 | . . . . . . 7 β’ (((π΄βπ) β β β§ (π΅βπ) β β*) β ((π΄βπ)[,)(π΅βπ)) β dom vol) | |
25 | 12, 23, 24 | syl2anc 584 | . . . . . 6 β’ ((π β§ π β π) β ((π΄βπ)[,)(π΅βπ)) β dom vol) |
26 | volge0 44667 | . . . . . 6 β’ (((π΄βπ)[,)(π΅βπ)) β dom vol β 0 β€ (volβ((π΄βπ)[,)(π΅βπ)))) | |
27 | 25, 26 | syl 17 | . . . . 5 β’ ((π β§ π β π) β 0 β€ (volβ((π΄βπ)[,)(π΅βπ)))) |
28 | 22, 4, 19, 27 | fprodge0 15936 | . . . 4 β’ (π β 0 β€ βπ β π (volβ((π΄βπ)[,)(π΅βπ)))) |
29 | 20 | ltpnfd 13100 | . . . 4 β’ (π β βπ β π (volβ((π΄βπ)[,)(π΅βπ))) < +β) |
30 | 9, 11, 21, 28, 29 | elicod 13373 | . . 3 β’ (π β βπ β π (volβ((π΄βπ)[,)(π΅βπ))) β (0[,)+β)) |
31 | 7, 30 | ifcld 4574 | . 2 β’ (π β if(π = β , 0, βπ β π (volβ((π΄βπ)[,)(π΅βπ)))) β (0[,)+β)) |
32 | 5, 31 | eqeltrd 2833 | 1 β’ (π β (π΄(πΏβπ)π΅) β (0[,)+β)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β c0 4322 ifcif 4528 class class class wbr 5148 β¦ cmpt 5231 dom cdm 5676 βΆwf 6539 βcfv 6543 (class class class)co 7408 β cmpo 7410 βm cmap 8819 Fincfn 8938 βcr 11108 0cc0 11109 +βcpnf 11244 β*cxr 11246 < clt 11247 β€ cle 11248 β cmin 11443 [,)cico 13325 βcprod 15848 volcvol 24979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ioo 13327 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-fl 13756 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-rlim 15432 df-sum 15632 df-prod 15849 df-rest 17367 df-topgen 17388 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-top 22395 df-topon 22412 df-bases 22448 df-cmp 22890 df-ovol 24980 df-vol 24981 |
This theorem is referenced by: sge0hsphoire 45295 hoidmv1le 45300 hoidmvlelem1 45301 hoidmvlelem2 45302 hoidmvlelem3 45303 hoidmvlelem4 45304 hoidmvlelem5 45305 hoidmvle 45306 ovnhoilem2 45308 ovnhoi 45309 ovnlecvr2 45316 hspmbllem1 45332 hspmbllem2 45333 |
Copyright terms: Public domain | W3C validator |