Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvcl | Structured version Visualization version GIF version |
Description: The dimensional volume of a multidimensional half-open interval is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoidmvcl.l | ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
hoidmvcl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoidmvcl.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
hoidmvcl.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
Ref | Expression |
---|---|
hoidmvcl | ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidmvcl.l | . . 3 ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
2 | hoidmvcl.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
3 | hoidmvcl.b | . . 3 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
4 | hoidmvcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
5 | 1, 2, 3, 4 | hoidmvval 44115 | . 2 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
6 | 0e0icopnf 13190 | . . . 4 ⊢ 0 ∈ (0[,)+∞) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
8 | 0xr 11022 | . . . . 5 ⊢ 0 ∈ ℝ* | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ*) |
10 | pnfxr 11029 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → +∞ ∈ ℝ*) |
12 | 2 | ffvelrnda 6961 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
13 | 3 | ffvelrnda 6961 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
14 | volico 43524 | . . . . . . . 8 ⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) | |
15 | 12, 13, 14 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
16 | 13, 12 | resubcld 11403 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑘) − (𝐴‘𝑘)) ∈ ℝ) |
17 | 0red 10978 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ∈ ℝ) | |
18 | 16, 17 | ifcld 4505 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0) ∈ ℝ) |
19 | 15, 18 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
20 | 4, 19 | fprodrecl 15663 | . . . . 5 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
21 | 20 | rexrd 11025 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ*) |
22 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
23 | 13 | rexrd 11025 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ*) |
24 | icombl 24728 | . . . . . . 7 ⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ*) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol) | |
25 | 12, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol) |
26 | volge0 43502 | . . . . . 6 ⊢ (((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol → 0 ≤ (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ≤ (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
28 | 22, 4, 19, 27 | fprodge0 15703 | . . . 4 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
29 | 20 | ltpnfd 12857 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) < +∞) |
30 | 9, 11, 21, 28, 29 | elicod 13129 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ (0[,)+∞)) |
31 | 7, 30 | ifcld 4505 | . 2 ⊢ (𝜑 → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ (0[,)+∞)) |
32 | 5, 31 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∅c0 4256 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ↑m cmap 8615 Fincfn 8733 ℝcr 10870 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 − cmin 11205 [,)cico 13081 ∏cprod 15615 volcvol 24627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 df-prod 15616 df-rest 17133 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-cmp 22538 df-ovol 24628 df-vol 24629 |
This theorem is referenced by: sge0hsphoire 44127 hoidmv1le 44132 hoidmvlelem1 44133 hoidmvlelem2 44134 hoidmvlelem3 44135 hoidmvlelem4 44136 hoidmvlelem5 44137 hoidmvle 44138 ovnhoilem2 44140 ovnhoi 44141 ovnlecvr2 44148 hspmbllem1 44164 hspmbllem2 44165 |
Copyright terms: Public domain | W3C validator |