| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumge0 | Structured version Visualization version GIF version | ||
| Description: If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumge0.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fsumge0.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| fsumge0 | ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rge0ssre 13359 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 2 | ax-resscn 11066 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | sstri 3945 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (0[,)+∞) ⊆ ℂ) |
| 5 | ge0addcl 13363 | . . . 4 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞)) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
| 7 | fsumge0.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 8 | fsumge0.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 9 | fsumge0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 10 | elrege0 13357 | . . . 4 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 11 | 8, 9, 10 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| 12 | 0e0icopnf 13361 | . . . 4 ⊢ 0 ∈ (0[,)+∞) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
| 14 | 4, 6, 7, 11, 13 | fsumcllem 15639 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
| 15 | elrege0 13357 | . . 3 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) ↔ (Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ 𝐴 𝐵)) | |
| 16 | 15 | simprbi 496 | . 2 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| 17 | 14, 16 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3903 class class class wbr 5092 (class class class)co 7349 Fincfn 8872 ℂcc 11007 ℝcr 11008 0cc0 11009 + caddc 11012 +∞cpnf 11146 ≤ cle 11150 [,)cico 13250 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-ico 13254 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: fsumless 15703 fsumle 15706 o1fsum 15720 rrxcph 25290 csbren 25297 trirn 25298 rrxmet 25306 rrxdstprj1 25307 itg1ge0 25585 itg1ge0a 25610 mtest 26311 abelthlem7 26346 abelthlem8 26347 ftalem4 26984 ftalem5 26985 chtge0 27020 vmadivsum 27391 vmadivsumb 27392 rpvmasumlem 27396 dchrvmasumlem2 27407 dchrisum0re 27422 rplogsum 27436 dirith2 27437 mulog2sumlem2 27444 vmalogdivsum2 27447 2vmadivsumlem 27449 selbergb 27458 selberg2b 27461 logdivbnd 27465 selberg3lem2 27467 selberg4lem1 27469 pntrlog2bndlem1 27486 pntrlog2bndlem2 27487 pntrlog2bnd 27493 pntpbnd1 27495 pntlemf 27514 axsegconlem3 28864 ax5seglem3 28876 sibfof 34308 eulerpartlemgc 34330 eulerpartlemb 34336 hgt750leme 34626 rrnmet 37809 rrndstprj1 37810 rrndstprj2 37811 sticksstones6 42124 fsumge0cl 45554 stoweidlem26 46007 stoweidlem38 46019 stoweidlem44 46025 etransclem35 46250 rrndistlt 46271 hoiqssbllem2 46604 |
| Copyright terms: Public domain | W3C validator |