| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumge0 | Structured version Visualization version GIF version | ||
| Description: If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumge0.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fsumge0.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| fsumge0 | ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rge0ssre 13356 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 2 | ax-resscn 11063 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 3 | 1, 2 | sstri 3939 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (0[,)+∞) ⊆ ℂ) |
| 5 | ge0addcl 13360 | . . . 4 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞)) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
| 7 | fsumge0.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 8 | fsumge0.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 9 | fsumge0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 10 | elrege0 13354 | . . . 4 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 11 | 8, 9, 10 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| 12 | 0e0icopnf 13358 | . . . 4 ⊢ 0 ∈ (0[,)+∞) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
| 14 | 4, 6, 7, 11, 13 | fsumcllem 15639 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
| 15 | elrege0 13354 | . . 3 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) ↔ (Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ 𝐴 𝐵)) | |
| 16 | 15 | simprbi 496 | . 2 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| 17 | 14, 16 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5089 (class class class)co 7346 Fincfn 8869 ℂcc 11004 ℝcr 11005 0cc0 11006 + caddc 11009 +∞cpnf 11143 ≤ cle 11147 [,)cico 13247 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ico 13251 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: fsumless 15703 fsumle 15706 o1fsum 15720 rrxcph 25319 csbren 25326 trirn 25327 rrxmet 25335 rrxdstprj1 25336 itg1ge0 25614 itg1ge0a 25639 mtest 26340 abelthlem7 26375 abelthlem8 26376 ftalem4 27013 ftalem5 27014 chtge0 27049 vmadivsum 27420 vmadivsumb 27421 rpvmasumlem 27425 dchrvmasumlem2 27436 dchrisum0re 27451 rplogsum 27465 dirith2 27466 mulog2sumlem2 27473 vmalogdivsum2 27476 2vmadivsumlem 27478 selbergb 27487 selberg2b 27490 logdivbnd 27494 selberg3lem2 27496 selberg4lem1 27498 pntrlog2bndlem1 27515 pntrlog2bndlem2 27516 pntrlog2bnd 27522 pntpbnd1 27524 pntlemf 27543 axsegconlem3 28897 ax5seglem3 28909 sibfof 34353 eulerpartlemgc 34375 eulerpartlemb 34381 hgt750leme 34671 rrnmet 37877 rrndstprj1 37878 rrndstprj2 37879 sticksstones6 42192 fsumge0cl 45621 stoweidlem26 46072 stoweidlem38 46084 stoweidlem44 46090 etransclem35 46315 rrndistlt 46336 hoiqssbllem2 46669 |
| Copyright terms: Public domain | W3C validator |