![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumge0 | Structured version Visualization version GIF version |
Description: If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsumge0.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
fsumge0.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
Ref | Expression |
---|---|
fsumge0 | ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 13516 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | ax-resscn 11241 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 4018 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (0[,)+∞) ⊆ ℂ) |
5 | ge0addcl 13520 | . . . 4 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞)) | |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
7 | fsumge0.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
8 | fsumge0.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
9 | fsumge0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
10 | elrege0 13514 | . . . 4 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
11 | 8, 9, 10 | sylanbrc 582 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
12 | 0e0icopnf 13518 | . . . 4 ⊢ 0 ∈ (0[,)+∞) | |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
14 | 4, 6, 7, 11, 13 | fsumcllem 15780 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
15 | elrege0 13514 | . . 3 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) ↔ (Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ 𝐴 𝐵)) | |
16 | 15 | simprbi 496 | . 2 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
17 | 14, 16 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 (class class class)co 7448 Fincfn 9003 ℂcc 11182 ℝcr 11183 0cc0 11184 + caddc 11187 +∞cpnf 11321 ≤ cle 11325 [,)cico 13409 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 |
This theorem is referenced by: fsumless 15844 fsumle 15847 o1fsum 15861 rrxcph 25445 csbren 25452 trirn 25453 rrxmet 25461 rrxdstprj1 25462 itg1ge0 25740 itg1ge0a 25766 mtest 26465 abelthlem7 26500 abelthlem8 26501 ftalem4 27137 ftalem5 27138 chtge0 27173 vmadivsum 27544 vmadivsumb 27545 rpvmasumlem 27549 dchrvmasumlem2 27560 dchrisum0re 27575 rplogsum 27589 dirith2 27590 mulog2sumlem2 27597 vmalogdivsum2 27600 2vmadivsumlem 27602 selbergb 27611 selberg2b 27614 logdivbnd 27618 selberg3lem2 27620 selberg4lem1 27622 pntrlog2bndlem1 27639 pntrlog2bndlem2 27640 pntrlog2bnd 27646 pntpbnd1 27648 pntlemf 27667 axsegconlem3 28952 ax5seglem3 28964 sibfof 34305 eulerpartlemgc 34327 eulerpartlemb 34333 hgt750leme 34635 rrnmet 37789 rrndstprj1 37790 rrndstprj2 37791 sticksstones6 42108 fsumge0cl 45494 stoweidlem26 45947 stoweidlem38 45959 stoweidlem44 45965 etransclem35 46190 rrndistlt 46211 hoiqssbllem2 46544 |
Copyright terms: Public domain | W3C validator |