Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsumge0 | Structured version Visualization version GIF version |
Description: If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsumge0.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
fsumge0.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
Ref | Expression |
---|---|
fsumge0 | ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 13188 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | ax-resscn 10928 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | sstri 3930 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (0[,)+∞) ⊆ ℂ) |
5 | ge0addcl 13192 | . . . 4 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞)) | |
6 | 5 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
7 | fsumge0.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
8 | fsumge0.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
9 | fsumge0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
10 | elrege0 13186 | . . . 4 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
11 | 8, 9, 10 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
12 | 0e0icopnf 13190 | . . . 4 ⊢ 0 ∈ (0[,)+∞) | |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
14 | 4, 6, 7, 11, 13 | fsumcllem 15444 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
15 | elrege0 13186 | . . 3 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) ↔ (Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ 𝐴 𝐵)) | |
16 | 15 | simprbi 497 | . 2 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
17 | 14, 16 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 (class class class)co 7275 Fincfn 8733 ℂcc 10869 ℝcr 10870 0cc0 10871 + caddc 10874 +∞cpnf 11006 ≤ cle 11010 [,)cico 13081 Σcsu 15397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 |
This theorem is referenced by: fsumless 15508 fsumle 15511 o1fsum 15525 rrxcph 24556 csbren 24563 trirn 24564 rrxmet 24572 rrxdstprj1 24573 itg1ge0 24850 itg1ge0a 24876 mtest 25563 abelthlem7 25597 abelthlem8 25598 ftalem4 26225 ftalem5 26226 chtge0 26261 vmadivsum 26630 vmadivsumb 26631 rpvmasumlem 26635 dchrvmasumlem2 26646 dchrisum0re 26661 rplogsum 26675 dirith2 26676 mulog2sumlem2 26683 vmalogdivsum2 26686 2vmadivsumlem 26688 selbergb 26697 selberg2b 26700 logdivbnd 26704 selberg3lem2 26706 selberg4lem1 26708 pntrlog2bndlem1 26725 pntrlog2bndlem2 26726 pntrlog2bnd 26732 pntpbnd1 26734 pntlemf 26753 axsegconlem3 27287 ax5seglem3 27299 sibfof 32307 eulerpartlemgc 32329 eulerpartlemb 32335 hgt750leme 32638 rrnmet 35987 rrndstprj1 35988 rrndstprj2 35989 sticksstones6 40107 fsumge0cl 43114 stoweidlem26 43567 stoweidlem38 43579 stoweidlem44 43585 etransclem35 43810 rrndistlt 43831 hoiqssbllem2 44161 |
Copyright terms: Public domain | W3C validator |