MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgaddlem1 Structured version   Visualization version   GIF version

Theorem itgaddlem1 25752
Description: Lemma for itgadd 25754. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgadd.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgadd.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
itgadd.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
itgadd.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgadd.6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
itgadd.7 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
itgadd.8 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
Assertion
Ref Expression
itgaddlem1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgaddlem1
StepHypRef Expression
1 itgadd.5 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgadd.6 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
31, 2readdcld 11148 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℝ)
4 itgadd.1 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 itgadd.2 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 itgadd.3 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝑉)
7 itgadd.4 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
84, 5, 6, 7ibladd 25750 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
9 itgadd.7 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
10 itgadd.8 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
111, 2, 9, 10addge0d 11700 . . 3 ((𝜑𝑥𝐴) → 0 ≤ (𝐵 + 𝐶))
123, 8, 11itgposval 25725 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
131, 5, 9itgposval 25725 . . . 4 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
142, 7, 10itgposval 25725 . . . 4 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))))
1513, 14oveq12d 7370 . . 3 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))))
161, 9iblpos 25722 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
175, 16mpbid 232 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
1817simpld 494 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
1918, 1mbfdm2 25566 . . . . . 6 (𝜑𝐴 ∈ dom vol)
20 mblss 25460 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
2119, 20syl 17 . . . . 5 (𝜑𝐴 ⊆ ℝ)
22 rembl 25469 . . . . . 6 ℝ ∈ dom vol
2322a1i 11 . . . . 5 (𝜑 → ℝ ∈ dom vol)
24 elrege0 13356 . . . . . . . 8 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
251, 9, 24sylanbrc 583 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
26 0e0icopnf 13360 . . . . . . . 8 0 ∈ (0[,)+∞)
2726a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
2825, 27ifclda 4510 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
2928adantr 480 . . . . 5 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
30 eldifn 4081 . . . . . . 7 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
3130adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
3231iffalsed 4485 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, 𝐵, 0) = 0)
33 iftrue 4480 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 𝐵)
3433mpteq2ia 5188 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥𝐴𝐵)
3534, 18eqeltrid 2837 . . . . 5 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
3621, 23, 29, 32, 35mbfss 25575 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
3728adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
3837fmpttd 7054 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
3917simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
40 elrege0 13356 . . . . . . . 8 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
412, 10, 40sylanbrc 583 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,)+∞))
4241, 27ifclda 4510 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
4342adantr 480 . . . . 5 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
4431iffalsed 4485 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, 𝐶, 0) = 0)
45 iftrue 4480 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
4645mpteq2ia 5188 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥𝐴𝐶)
472, 10iblpos 25722 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ)))
487, 47mpbid 232 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ))
4948simpld 494 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
5046, 49eqeltrid 2837 . . . . 5 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ MblFn)
5121, 23, 43, 44, 50mbfss 25575 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)) ∈ MblFn)
5242adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
5352fmpttd 7054 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)):ℝ⟶(0[,)+∞))
5448simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ)
5536, 38, 39, 51, 53, 54itg2add 25688 . . 3 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))))
56 reex 11104 . . . . . . 7 ℝ ∈ V
5756a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
58 eqidd 2734 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
59 eqidd 2734 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
6057, 37, 52, 58, 59offval2 7636 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0))))
6133, 45oveq12d 7370 . . . . . . . 8 (𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = (𝐵 + 𝐶))
62 iftrue 4480 . . . . . . . 8 (𝑥𝐴 → if(𝑥𝐴, (𝐵 + 𝐶), 0) = (𝐵 + 𝐶))
6361, 62eqtr4d 2771 . . . . . . 7 (𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0))
64 iffalse 4483 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 0)
65 iffalse 4483 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
6664, 65oveq12d 7370 . . . . . . . . 9 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = (0 + 0))
67 00id 11295 . . . . . . . . 9 (0 + 0) = 0
6866, 67eqtrdi 2784 . . . . . . . 8 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = 0)
69 iffalse 4483 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, (𝐵 + 𝐶), 0) = 0)
7068, 69eqtr4d 2771 . . . . . . 7 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0))
7163, 70pm2.61i 182 . . . . . 6 (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0)
7271mpteq2i 5189 . . . . 5 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))
7360, 72eqtrdi 2784 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0)))
7473fveq2d 6832 . . 3 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
7515, 55, 743eqtr2d 2774 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
7612, 75eqtr4d 2771 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  wss 3898  ifcif 4474   class class class wbr 5093  cmpt 5174  dom cdm 5619  cfv 6486  (class class class)co 7352  f cof 7614  cr 11012  0cc0 11013   + caddc 11016  +∞cpnf 11150  cle 11154  [,)cico 13249  volcvol 25392  MblFncmbf 25543  2citg2 25545  𝐿1cibl 25546  citg 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cc 10333  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398  df-sum 15596  df-rest 17328  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-top 22810  df-topon 22827  df-bases 22862  df-cmp 23303  df-ovol 25393  df-vol 25394  df-mbf 25548  df-itg1 25549  df-itg2 25550  df-ibl 25551  df-itg 25552  df-0p 25599
This theorem is referenced by:  itgaddlem2  25753
  Copyright terms: Public domain W3C validator