Proof of Theorem itgaddlem1
Step | Hyp | Ref
| Expression |
1 | | itgadd.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
2 | | itgadd.6 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
3 | 1, 2 | readdcld 10935 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + 𝐶) ∈ ℝ) |
4 | | itgadd.1 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
5 | | itgadd.2 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
6 | | itgadd.3 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
7 | | itgadd.4 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
8 | 4, 5, 6, 7 | ibladd 24890 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈
𝐿1) |
9 | | itgadd.7 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
10 | | itgadd.8 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐶) |
11 | 1, 2, 9, 10 | addge0d 11481 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (𝐵 + 𝐶)) |
12 | 3, 8, 11 | itgposval 24865 |
. 2
⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐵 + 𝐶), 0)))) |
13 | 1, 5, 9 | itgposval 24865 |
. . . 4
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
14 | 2, 7, 10 | itgposval 24865 |
. . . 4
⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)))) |
15 | 13, 14 | oveq12d 7273 |
. . 3
⊢ (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0))))) |
16 | 1, 9 | iblpos 24862 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐵, 0))) ∈ ℝ))) |
17 | 5, 16 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐵, 0))) ∈ ℝ)) |
18 | 17 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
19 | 18, 1 | mbfdm2 24706 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom vol) |
20 | | mblss 24600 |
. . . . . 6
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
21 | 19, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
22 | | rembl 24609 |
. . . . . 6
⊢ ℝ
∈ dom vol |
23 | 22 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈ dom
vol) |
24 | | elrege0 13115 |
. . . . . . . 8
⊢ (𝐵 ∈ (0[,)+∞) ↔
(𝐵 ∈ ℝ ∧ 0
≤ 𝐵)) |
25 | 1, 9, 24 | sylanbrc 582 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
26 | | 0e0icopnf 13119 |
. . . . . . . 8
⊢ 0 ∈
(0[,)+∞) |
27 | 26 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,)+∞)) |
28 | 25, 27 | ifclda 4491 |
. . . . . 6
⊢ (𝜑 → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
29 | 28 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
30 | | eldifn 4058 |
. . . . . . 7
⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) |
31 | 30 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
32 | 31 | iffalsed 4467 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 𝐵, 0) = 0) |
33 | | iftrue 4462 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐵, 0) = 𝐵) |
34 | 33 | mpteq2ia 5173 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
35 | 34, 18 | eqeltrid 2843 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∈ MblFn) |
36 | 21, 23, 29, 32, 35 | mbfss 24715 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∈ MblFn) |
37 | 28 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
38 | 37 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵,
0)):ℝ⟶(0[,)+∞)) |
39 | 17 | simprd 495 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐵, 0))) ∈ ℝ) |
40 | | elrege0 13115 |
. . . . . . . 8
⊢ (𝐶 ∈ (0[,)+∞) ↔
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) |
41 | 2, 10, 40 | sylanbrc 582 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,)+∞)) |
42 | 41, 27 | ifclda 4491 |
. . . . . 6
⊢ (𝜑 → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ (0[,)+∞)) |
43 | 42 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ (0[,)+∞)) |
44 | 31 | iffalsed 4467 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 𝐶, 0) = 0) |
45 | | iftrue 4462 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐶, 0) = 𝐶) |
46 | 45 | mpteq2ia 5173 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
47 | 2, 10 | iblpos 24862 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐶, 0))) ∈ ℝ))) |
48 | 7, 47 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐶, 0))) ∈ ℝ)) |
49 | 48 | simpld 494 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
50 | 46, 49 | eqeltrid 2843 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) ∈ MblFn) |
51 | 21, 23, 43, 44, 50 | mbfss 24715 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) ∈ MblFn) |
52 | 42 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ (0[,)+∞)) |
53 | 52 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶,
0)):ℝ⟶(0[,)+∞)) |
54 | 48 | simprd 495 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐶, 0))) ∈ ℝ) |
55 | 36, 38, 39, 51, 53, 54 | itg2add 24829 |
. . 3
⊢ (𝜑 →
(∫2‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0))))) |
56 | | reex 10893 |
. . . . . . 7
⊢ ℝ
∈ V |
57 | 56 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ∈
V) |
58 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) |
59 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0))) |
60 | 57, 37, 52, 58, 59 | offval2 7531 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, 𝐵, 0) + if(𝑥 ∈ 𝐴, 𝐶, 0)))) |
61 | 33, 45 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, 𝐵, 0) + if(𝑥 ∈ 𝐴, 𝐶, 0)) = (𝐵 + 𝐶)) |
62 | | iftrue 4462 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (𝐵 + 𝐶), 0) = (𝐵 + 𝐶)) |
63 | 61, 62 | eqtr4d 2781 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, 𝐵, 0) + if(𝑥 ∈ 𝐴, 𝐶, 0)) = if(𝑥 ∈ 𝐴, (𝐵 + 𝐶), 0)) |
64 | | iffalse 4465 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐵, 0) = 0) |
65 | | iffalse 4465 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐶, 0) = 0) |
66 | 64, 65 | oveq12d 7273 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, 𝐵, 0) + if(𝑥 ∈ 𝐴, 𝐶, 0)) = (0 + 0)) |
67 | | 00id 11080 |
. . . . . . . . 9
⊢ (0 + 0) =
0 |
68 | 66, 67 | eqtrdi 2795 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, 𝐵, 0) + if(𝑥 ∈ 𝐴, 𝐶, 0)) = 0) |
69 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (𝐵 + 𝐶), 0) = 0) |
70 | 68, 69 | eqtr4d 2781 |
. . . . . . 7
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, 𝐵, 0) + if(𝑥 ∈ 𝐴, 𝐶, 0)) = if(𝑥 ∈ 𝐴, (𝐵 + 𝐶), 0)) |
71 | 63, 70 | pm2.61i 182 |
. . . . . 6
⊢ (if(𝑥 ∈ 𝐴, 𝐵, 0) + if(𝑥 ∈ 𝐴, 𝐶, 0)) = if(𝑥 ∈ 𝐴, (𝐵 + 𝐶), 0) |
72 | 71 | mpteq2i 5175 |
. . . . 5
⊢ (𝑥 ∈ ℝ ↦
(if(𝑥 ∈ 𝐴, 𝐵, 0) + if(𝑥 ∈ 𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐵 + 𝐶), 0)) |
73 | 60, 72 | eqtrdi 2795 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐵 + 𝐶), 0))) |
74 | 73 | fveq2d 6760 |
. . 3
⊢ (𝜑 →
(∫2‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐵 + 𝐶), 0)))) |
75 | 15, 55, 74 | 3eqtr2d 2784 |
. 2
⊢ (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐵 + 𝐶), 0)))) |
76 | 12, 75 | eqtr4d 2781 |
1
⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) |