MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgaddlem1 Structured version   Visualization version   GIF version

Theorem itgaddlem1 25724
Description: Lemma for itgadd 25726. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgadd.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgadd.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
itgadd.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
itgadd.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgadd.6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
itgadd.7 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
itgadd.8 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
Assertion
Ref Expression
itgaddlem1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgaddlem1
StepHypRef Expression
1 itgadd.5 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgadd.6 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
31, 2readdcld 11203 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℝ)
4 itgadd.1 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 itgadd.2 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 itgadd.3 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝑉)
7 itgadd.4 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
84, 5, 6, 7ibladd 25722 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
9 itgadd.7 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
10 itgadd.8 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
111, 2, 9, 10addge0d 11754 . . 3 ((𝜑𝑥𝐴) → 0 ≤ (𝐵 + 𝐶))
123, 8, 11itgposval 25697 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
131, 5, 9itgposval 25697 . . . 4 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
142, 7, 10itgposval 25697 . . . 4 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))))
1513, 14oveq12d 7405 . . 3 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))))
161, 9iblpos 25694 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
175, 16mpbid 232 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
1817simpld 494 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
1918, 1mbfdm2 25538 . . . . . 6 (𝜑𝐴 ∈ dom vol)
20 mblss 25432 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
2119, 20syl 17 . . . . 5 (𝜑𝐴 ⊆ ℝ)
22 rembl 25441 . . . . . 6 ℝ ∈ dom vol
2322a1i 11 . . . . 5 (𝜑 → ℝ ∈ dom vol)
24 elrege0 13415 . . . . . . . 8 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
251, 9, 24sylanbrc 583 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
26 0e0icopnf 13419 . . . . . . . 8 0 ∈ (0[,)+∞)
2726a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
2825, 27ifclda 4524 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
2928adantr 480 . . . . 5 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
30 eldifn 4095 . . . . . . 7 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
3130adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
3231iffalsed 4499 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, 𝐵, 0) = 0)
33 iftrue 4494 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 𝐵)
3433mpteq2ia 5202 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥𝐴𝐵)
3534, 18eqeltrid 2832 . . . . 5 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
3621, 23, 29, 32, 35mbfss 25547 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
3728adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
3837fmpttd 7087 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
3917simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
40 elrege0 13415 . . . . . . . 8 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
412, 10, 40sylanbrc 583 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,)+∞))
4241, 27ifclda 4524 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
4342adantr 480 . . . . 5 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
4431iffalsed 4499 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, 𝐶, 0) = 0)
45 iftrue 4494 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
4645mpteq2ia 5202 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥𝐴𝐶)
472, 10iblpos 25694 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ)))
487, 47mpbid 232 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ))
4948simpld 494 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
5046, 49eqeltrid 2832 . . . . 5 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ MblFn)
5121, 23, 43, 44, 50mbfss 25547 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)) ∈ MblFn)
5242adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
5352fmpttd 7087 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)):ℝ⟶(0[,)+∞))
5448simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ)
5536, 38, 39, 51, 53, 54itg2add 25660 . . 3 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))))
56 reex 11159 . . . . . . 7 ℝ ∈ V
5756a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
58 eqidd 2730 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
59 eqidd 2730 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
6057, 37, 52, 58, 59offval2 7673 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0))))
6133, 45oveq12d 7405 . . . . . . . 8 (𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = (𝐵 + 𝐶))
62 iftrue 4494 . . . . . . . 8 (𝑥𝐴 → if(𝑥𝐴, (𝐵 + 𝐶), 0) = (𝐵 + 𝐶))
6361, 62eqtr4d 2767 . . . . . . 7 (𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0))
64 iffalse 4497 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 0)
65 iffalse 4497 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
6664, 65oveq12d 7405 . . . . . . . . 9 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = (0 + 0))
67 00id 11349 . . . . . . . . 9 (0 + 0) = 0
6866, 67eqtrdi 2780 . . . . . . . 8 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = 0)
69 iffalse 4497 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, (𝐵 + 𝐶), 0) = 0)
7068, 69eqtr4d 2767 . . . . . . 7 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0))
7163, 70pm2.61i 182 . . . . . 6 (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0)
7271mpteq2i 5203 . . . . 5 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))
7360, 72eqtrdi 2780 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0)))
7473fveq2d 6862 . . 3 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
7515, 55, 743eqtr2d 2770 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
7612, 75eqtr4d 2767 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387  f cof 7651  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205  cle 11209  [,)cico 13308  volcvol 25364  MblFncmbf 25515  2citg2 25517  𝐿1cibl 25518  citg 25519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571
This theorem is referenced by:  itgaddlem2  25725
  Copyright terms: Public domain W3C validator