![]() |
Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itggt0cn | Structured version Visualization version GIF version |
Description: itggt0 23828 holds for continuous functions in the absence of ax-cc 9463. (Contributed by Brendan Leahy, 16-Nov-2017.) |
Ref | Expression |
---|---|
itggt0cn.1 | ⊢ (𝜑 → 𝑋 < 𝑌) |
itggt0cn.2 | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1) |
itggt0cn.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ+) |
itggt0cn.cn | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
Ref | Expression |
---|---|
itggt0cn | ⊢ (𝜑 → 0 < ∫(𝑋(,)𝑌)𝐵 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itggt0cn.1 | . . 3 ⊢ (𝜑 → 𝑋 < 𝑌) | |
2 | itggt0cn.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ+) | |
3 | 2 | rpred 12075 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ) |
4 | 2 | rpge0d 12079 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 0 ≤ 𝐵) |
5 | elrege0 12485 | . . . . . . 7 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
6 | 3, 4, 5 | sylanbrc 572 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ (0[,)+∞)) |
7 | 0e0icopnf 12489 | . . . . . . 7 ⊢ 0 ∈ (0[,)+∞) | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑋(,)𝑌)) → 0 ∈ (0[,)+∞)) |
9 | 6, 8 | ifclda 4260 | . . . . 5 ⊢ (𝜑 → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ (0[,)+∞)) |
10 | 9 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ (0[,)+∞)) |
11 | 10 | fmpttd 6530 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)):ℝ⟶(0[,)+∞)) |
12 | 2 | rpgt0d 12078 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 0 < 𝐵) |
13 | elioore 12410 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ ℝ) | |
14 | 13 | adantl 467 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ ℝ) |
15 | iftrue 4232 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (𝑋(,)𝑌) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) = 𝐵) | |
16 | 15 | adantl 467 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) = 𝐵) |
17 | 16, 2 | eqeltrd 2850 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ ℝ+) |
18 | eqid 2771 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) | |
19 | 18 | fvmpt2 6435 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) |
20 | 14, 17, 19 | syl2anc 573 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) |
21 | 20, 16 | eqtrd 2805 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = 𝐵) |
22 | 12, 21 | breqtrrd 4815 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) |
23 | 22 | ralrimiva 3115 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) |
24 | nfcv 2913 | . . . . . . 7 ⊢ Ⅎ𝑥0 | |
25 | nfcv 2913 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
26 | nffvmpt1 6342 | . . . . . . 7 ⊢ Ⅎ𝑥((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) | |
27 | 24, 25, 26 | nfbr 4834 | . . . . . 6 ⊢ Ⅎ𝑥0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) |
28 | nfv 1995 | . . . . . 6 ⊢ Ⅎ𝑦0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) | |
29 | fveq2 6333 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) | |
30 | 29 | breq2d 4799 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) ↔ 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥))) |
31 | 27, 28, 30 | cbvral 3316 | . . . . 5 ⊢ (∀𝑦 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) ↔ ∀𝑥 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) |
32 | 23, 31 | sylibr 224 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦)) |
33 | 32 | r19.21bi 3081 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)𝑌)) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦)) |
34 | ioossre 12440 | . . . . . 6 ⊢ (𝑋(,)𝑌) ⊆ ℝ | |
35 | resmpt 5589 | . . . . . 6 ⊢ ((𝑋(,)𝑌) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))) | |
36 | 34, 35 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) |
37 | 15 | mpteq2ia 4875 | . . . . 5 ⊢ (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) |
38 | 36, 37 | eqtri 2793 | . . . 4 ⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) |
39 | itggt0cn.cn | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) | |
40 | 38, 39 | syl5eqel 2854 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
41 | 1, 11, 33, 40 | itg2gt0cn 33796 | . 2 ⊢ (𝜑 → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)))) |
42 | itggt0cn.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1) | |
43 | 3, 42, 4 | itgposval 23782 | . 2 ⊢ (𝜑 → ∫(𝑋(,)𝑌)𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)))) |
44 | 41, 43 | breqtrrd 4815 | 1 ⊢ (𝜑 → 0 < ∫(𝑋(,)𝑌)𝐵 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 ifcif 4226 class class class wbr 4787 ↦ cmpt 4864 ↾ cres 5252 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 ℝcr 10141 0cc0 10142 +∞cpnf 10277 < clt 10280 ≤ cle 10281 ℝ+crp 12035 (,)cioo 12380 [,)cico 12382 –cn→ccncf 22899 ∫2citg2 23604 𝐿1cibl 23605 ∫citg 23606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-disj 4756 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-ofr 7049 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fi 8477 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-n0 11500 df-z 11585 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-rlim 14428 df-sum 14625 df-rest 16291 df-topgen 16312 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-top 20919 df-topon 20936 df-bases 20971 df-cmp 21411 df-cncf 22901 df-ovol 23452 df-vol 23453 df-mbf 23607 df-itg1 23608 df-itg2 23609 df-ibl 23610 df-itg 23611 df-0p 23657 |
This theorem is referenced by: ftc1cnnclem 33814 |
Copyright terms: Public domain | W3C validator |