![]() |
Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itggt0cn | Structured version Visualization version GIF version |
Description: itggt0 25894 holds for continuous functions in the absence of ax-cc 10473. (Contributed by Brendan Leahy, 16-Nov-2017.) |
Ref | Expression |
---|---|
itggt0cn.1 | ⊢ (𝜑 → 𝑋 < 𝑌) |
itggt0cn.2 | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1) |
itggt0cn.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ+) |
itggt0cn.cn | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
Ref | Expression |
---|---|
itggt0cn | ⊢ (𝜑 → 0 < ∫(𝑋(,)𝑌)𝐵 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itggt0cn.1 | . . 3 ⊢ (𝜑 → 𝑋 < 𝑌) | |
2 | itggt0cn.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ+) | |
3 | 2 | rpred 13075 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ) |
4 | 2 | rpge0d 13079 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 0 ≤ 𝐵) |
5 | elrege0 13491 | . . . . . . 7 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
6 | 3, 4, 5 | sylanbrc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ (0[,)+∞)) |
7 | 0e0icopnf 13495 | . . . . . . 7 ⊢ 0 ∈ (0[,)+∞) | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑋(,)𝑌)) → 0 ∈ (0[,)+∞)) |
9 | 6, 8 | ifclda 4566 | . . . . 5 ⊢ (𝜑 → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ (0[,)+∞)) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ (0[,)+∞)) |
11 | 10 | fmpttd 7135 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)):ℝ⟶(0[,)+∞)) |
12 | 2 | rpgt0d 13078 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 0 < 𝐵) |
13 | elioore 13414 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ ℝ) | |
14 | 13 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ ℝ) |
15 | iftrue 4537 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (𝑋(,)𝑌) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) = 𝐵) | |
16 | 15 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) = 𝐵) |
17 | 16, 2 | eqeltrd 2839 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ ℝ+) |
18 | eqid 2735 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) | |
19 | 18 | fvmpt2 7027 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) |
20 | 14, 17, 19 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) |
21 | 20, 16 | eqtrd 2775 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = 𝐵) |
22 | 12, 21 | breqtrrd 5176 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) |
23 | 22 | ralrimiva 3144 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) |
24 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑥0 | |
25 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
26 | nffvmpt1 6918 | . . . . . . 7 ⊢ Ⅎ𝑥((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) | |
27 | 24, 25, 26 | nfbr 5195 | . . . . . 6 ⊢ Ⅎ𝑥0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) |
28 | nfv 1912 | . . . . . 6 ⊢ Ⅎ𝑦0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) | |
29 | fveq2 6907 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) | |
30 | 29 | breq2d 5160 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) ↔ 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥))) |
31 | 27, 28, 30 | cbvralw 3304 | . . . . 5 ⊢ (∀𝑦 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) ↔ ∀𝑥 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) |
32 | 23, 31 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦)) |
33 | 32 | r19.21bi 3249 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)𝑌)) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦)) |
34 | ioossre 13445 | . . . . . 6 ⊢ (𝑋(,)𝑌) ⊆ ℝ | |
35 | resmpt 6057 | . . . . . 6 ⊢ ((𝑋(,)𝑌) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))) | |
36 | 34, 35 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) |
37 | 15 | mpteq2ia 5251 | . . . . 5 ⊢ (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) |
38 | 36, 37 | eqtri 2763 | . . . 4 ⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) |
39 | itggt0cn.cn | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) | |
40 | 38, 39 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
41 | 1, 11, 33, 40 | itg2gt0cn 37662 | . 2 ⊢ (𝜑 → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)))) |
42 | itggt0cn.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1) | |
43 | 3, 42, 4 | itgposval 25846 | . 2 ⊢ (𝜑 → ∫(𝑋(,)𝑌)𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)))) |
44 | 41, 43 | breqtrrd 5176 | 1 ⊢ (𝜑 → 0 < ∫(𝑋(,)𝑌)𝐵 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 +∞cpnf 11290 < clt 11293 ≤ cle 11294 ℝ+crp 13032 (,)cioo 13384 [,)cico 13386 –cn→ccncf 24916 ∫2citg2 25665 𝐿1cibl 25666 ∫citg 25667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-sum 15720 df-rest 17469 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-top 22916 df-topon 22933 df-bases 22969 df-cmp 23411 df-cncf 24918 df-ovol 25513 df-vol 25514 df-mbf 25668 df-itg1 25669 df-itg2 25670 df-ibl 25671 df-itg 25672 df-0p 25719 |
This theorem is referenced by: ftc1cnnclem 37678 |
Copyright terms: Public domain | W3C validator |