| Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itggt0cn | Structured version Visualization version GIF version | ||
| Description: itggt0 25879 holds for continuous functions in the absence of ax-cc 10475. (Contributed by Brendan Leahy, 16-Nov-2017.) |
| Ref | Expression |
|---|---|
| itggt0cn.1 | ⊢ (𝜑 → 𝑋 < 𝑌) |
| itggt0cn.2 | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1) |
| itggt0cn.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ+) |
| itggt0cn.cn | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| Ref | Expression |
|---|---|
| itggt0cn | ⊢ (𝜑 → 0 < ∫(𝑋(,)𝑌)𝐵 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itggt0cn.1 | . . 3 ⊢ (𝜑 → 𝑋 < 𝑌) | |
| 2 | itggt0cn.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ+) | |
| 3 | 2 | rpred 13077 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ) |
| 4 | 2 | rpge0d 13081 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 0 ≤ 𝐵) |
| 5 | elrege0 13494 | . . . . . . 7 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 6 | 3, 4, 5 | sylanbrc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ (0[,)+∞)) |
| 7 | 0e0icopnf 13498 | . . . . . . 7 ⊢ 0 ∈ (0[,)+∞) | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑋(,)𝑌)) → 0 ∈ (0[,)+∞)) |
| 9 | 6, 8 | ifclda 4561 | . . . . 5 ⊢ (𝜑 → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ (0[,)+∞)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ (0[,)+∞)) |
| 11 | 10 | fmpttd 7135 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)):ℝ⟶(0[,)+∞)) |
| 12 | 2 | rpgt0d 13080 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 0 < 𝐵) |
| 13 | elioore 13417 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ ℝ) | |
| 14 | 13 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ ℝ) |
| 15 | iftrue 4531 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (𝑋(,)𝑌) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) = 𝐵) | |
| 16 | 15 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) = 𝐵) |
| 17 | 16, 2 | eqeltrd 2841 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ ℝ+) |
| 18 | eqid 2737 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) | |
| 19 | 18 | fvmpt2 7027 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) |
| 20 | 14, 17, 19 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) |
| 21 | 20, 16 | eqtrd 2777 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = 𝐵) |
| 22 | 12, 21 | breqtrrd 5171 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) |
| 23 | 22 | ralrimiva 3146 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) |
| 24 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑥0 | |
| 25 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
| 26 | nffvmpt1 6917 | . . . . . . 7 ⊢ Ⅎ𝑥((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) | |
| 27 | 24, 25, 26 | nfbr 5190 | . . . . . 6 ⊢ Ⅎ𝑥0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) |
| 28 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) | |
| 29 | fveq2 6906 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) | |
| 30 | 29 | breq2d 5155 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) ↔ 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥))) |
| 31 | 27, 28, 30 | cbvralw 3306 | . . . . 5 ⊢ (∀𝑦 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) ↔ ∀𝑥 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)) |
| 32 | 23, 31 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦)) |
| 33 | 32 | r19.21bi 3251 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)𝑌)) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦)) |
| 34 | ioossre 13448 | . . . . . 6 ⊢ (𝑋(,)𝑌) ⊆ ℝ | |
| 35 | resmpt 6055 | . . . . . 6 ⊢ ((𝑋(,)𝑌) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))) | |
| 36 | 34, 35 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) |
| 37 | 15 | mpteq2ia 5245 | . . . . 5 ⊢ (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) |
| 38 | 36, 37 | eqtri 2765 | . . . 4 ⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) |
| 39 | itggt0cn.cn | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) | |
| 40 | 38, 39 | eqeltrid 2845 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
| 41 | 1, 11, 33, 40 | itg2gt0cn 37682 | . 2 ⊢ (𝜑 → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)))) |
| 42 | itggt0cn.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1) | |
| 43 | 3, 42, 4 | itgposval 25831 | . 2 ⊢ (𝜑 → ∫(𝑋(,)𝑌)𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)))) |
| 44 | 41, 43 | breqtrrd 5171 | 1 ⊢ (𝜑 → 0 < ∫(𝑋(,)𝑌)𝐵 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 ifcif 4525 class class class wbr 5143 ↦ cmpt 5225 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 +∞cpnf 11292 < clt 11295 ≤ cle 11296 ℝ+crp 13034 (,)cioo 13387 [,)cico 13389 –cn→ccncf 24902 ∫2citg2 25651 𝐿1cibl 25652 ∫citg 25653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-disj 5111 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-rlim 15525 df-sum 15723 df-rest 17467 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-bases 22953 df-cmp 23395 df-cncf 24904 df-ovol 25499 df-vol 25500 df-mbf 25654 df-itg1 25655 df-itg2 25656 df-ibl 25657 df-itg 25658 df-0p 25705 |
| This theorem is referenced by: ftc1cnnclem 37698 |
| Copyright terms: Public domain | W3C validator |