Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2t1e2 | Structured version Visualization version GIF version |
Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
2t1e2 | ⊢ (2 · 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11762 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | mulid1i 10696 | 1 ⊢ (2 · 1) = 2 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 (class class class)co 7156 1c1 10589 · cmul 10593 2c2 11742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-mulcl 10650 ax-mulcom 10652 ax-mulass 10654 ax-distr 10655 ax-1rid 10658 ax-cnre 10661 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-iota 6299 df-fv 6348 df-ov 7159 df-2 11750 |
This theorem is referenced by: decbin2 12291 expubnd 13604 sqrlem7 14669 trirecip 15279 bpoly3 15473 fsumcube 15475 ege2le3 15504 cos2tsin 15593 cos2bnd 15602 odd2np1 15755 opoe 15777 flodddiv4 15827 2mulprm 16102 pythagtriplem4 16224 2503lem2 16542 2503lem3 16543 4001lem4 16548 4001prm 16549 htpycc 23694 pco1 23729 pcohtpylem 23733 pcopt 23736 pcorevlem 23740 ovolunlem1a 24209 cos2pi 25181 coskpi 25227 dcubic2 25542 dcubic 25544 basellem3 25780 chtublem 25907 bcp1ctr 25975 bclbnd 25976 bposlem1 25980 bposlem2 25981 bposlem5 25984 2lgslem3d1 26099 2sqreultlem 26143 2sqreunnltlem 26146 chebbnd1lem1 26165 chebbnd1lem3 26167 chebbnd1 26168 frgrregord013 28292 ex-ind-dvds 28358 wrdt2ind 30761 knoppndvlem12 34286 heiborlem6 35568 3lexlogpow5ineq1 39655 aks4d1p1 39676 2np3bcnp1 39679 2ap1caineq 39680 flt4lem7 40023 jm2.23 40345 sumnnodd 42673 wallispilem4 43111 wallispi2lem1 43114 wallispi2lem2 43115 wallispi2 43116 stirlinglem11 43127 dirkertrigeqlem1 43141 fouriersw 43274 fmtnorec4 44483 lighneallem2 44540 lighneallem3 44541 3exp4mod41 44550 opoeALTV 44617 fppr2odd 44665 8exp8mod9 44670 ackval2 45510 ackval2012 45519 |
Copyright terms: Public domain | W3C validator |