| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t1e2 | Structured version Visualization version GIF version | ||
| Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2t1e2 | ⊢ (2 · 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12261 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | 1 | mulridi 11178 | 1 ⊢ (2 · 1) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 · cmul 11073 2c2 12241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulcom 11132 ax-mulass 11134 ax-distr 11135 ax-1rid 11138 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 |
| This theorem is referenced by: decbin2 12790 expubnd 14143 01sqrexlem7 15214 trirecip 15829 bpoly3 16024 fsumcube 16026 ege2le3 16056 cos2tsin 16147 cos2bnd 16156 odd2np1 16311 opoe 16333 flodddiv4 16385 2mulprm 16663 pythagtriplem4 16790 2503lem2 17108 2503lem3 17109 4001lem4 17114 4001prm 17115 htpycc 24879 pco1 24915 pcohtpylem 24919 pcopt 24922 pcorevlem 24926 ovolunlem1a 25397 cos2pi 26385 coskpi 26432 dcubic2 26754 dcubic 26756 basellem3 26993 chtublem 27122 bcp1ctr 27190 bclbnd 27191 bposlem1 27195 bposlem2 27196 bposlem5 27199 2lgslem3d1 27314 2sqreultlem 27358 2sqreunnltlem 27361 chebbnd1lem1 27380 chebbnd1lem3 27382 chebbnd1 27383 frgrregord013 30324 ex-ind-dvds 30390 wrdt2ind 32875 knoppndvlem12 36511 heiborlem6 37810 3lexlogpow5ineq1 42042 aks4d1p1 42064 2np3bcnp1 42132 2ap1caineq 42133 flt4lem7 42647 jm2.23 42985 sumnnodd 45628 wallispilem4 46066 wallispi2lem1 46069 wallispi2lem2 46070 wallispi2 46071 stirlinglem11 46082 dirkertrigeqlem1 46096 fouriersw 46229 fmtnorec4 47550 lighneallem2 47607 lighneallem3 47608 3exp4mod41 47617 opoeALTV 47684 fppr2odd 47732 8exp8mod9 47737 ackval2 48671 ackval2012 48680 |
| Copyright terms: Public domain | W3C validator |