| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t1e2 | Structured version Visualization version GIF version | ||
| Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2t1e2 | ⊢ (2 · 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12268 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | 1 | mulridi 11185 | 1 ⊢ (2 · 1) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 · cmul 11080 2c2 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-mulcom 11139 ax-mulass 11141 ax-distr 11142 ax-1rid 11145 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 |
| This theorem is referenced by: decbin2 12797 expubnd 14150 01sqrexlem7 15221 trirecip 15836 bpoly3 16031 fsumcube 16033 ege2le3 16063 cos2tsin 16154 cos2bnd 16163 odd2np1 16318 opoe 16340 flodddiv4 16392 2mulprm 16670 pythagtriplem4 16797 2503lem2 17115 2503lem3 17116 4001lem4 17121 4001prm 17122 htpycc 24886 pco1 24922 pcohtpylem 24926 pcopt 24929 pcorevlem 24933 ovolunlem1a 25404 cos2pi 26392 coskpi 26439 dcubic2 26761 dcubic 26763 basellem3 27000 chtublem 27129 bcp1ctr 27197 bclbnd 27198 bposlem1 27202 bposlem2 27203 bposlem5 27206 2lgslem3d1 27321 2sqreultlem 27365 2sqreunnltlem 27368 chebbnd1lem1 27387 chebbnd1lem3 27389 chebbnd1 27390 frgrregord013 30331 ex-ind-dvds 30397 wrdt2ind 32882 knoppndvlem12 36518 heiborlem6 37817 3lexlogpow5ineq1 42049 aks4d1p1 42071 2np3bcnp1 42139 2ap1caineq 42140 flt4lem7 42654 jm2.23 42992 sumnnodd 45635 wallispilem4 46073 wallispi2lem1 46076 wallispi2lem2 46077 wallispi2 46078 stirlinglem11 46089 dirkertrigeqlem1 46103 fouriersw 46236 fmtnorec4 47554 lighneallem2 47611 lighneallem3 47612 3exp4mod41 47621 opoeALTV 47688 fppr2odd 47736 8exp8mod9 47741 ackval2 48675 ackval2012 48684 |
| Copyright terms: Public domain | W3C validator |