![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2t1e2 | Structured version Visualization version GIF version |
Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
2t1e2 | ⊢ (2 · 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12368 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | mulridi 11294 | 1 ⊢ (2 · 1) = 2 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 · cmul 11189 2c2 12348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulcom 11248 ax-mulass 11250 ax-distr 11251 ax-1rid 11254 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 |
This theorem is referenced by: decbin2 12899 expubnd 14227 01sqrexlem7 15297 trirecip 15911 bpoly3 16106 fsumcube 16108 ege2le3 16138 cos2tsin 16227 cos2bnd 16236 odd2np1 16389 opoe 16411 flodddiv4 16461 2mulprm 16740 pythagtriplem4 16866 2503lem2 17185 2503lem3 17186 4001lem4 17191 4001prm 17192 htpycc 25031 pco1 25067 pcohtpylem 25071 pcopt 25074 pcorevlem 25078 ovolunlem1a 25550 cos2pi 26536 coskpi 26583 dcubic2 26905 dcubic 26907 basellem3 27144 chtublem 27273 bcp1ctr 27341 bclbnd 27342 bposlem1 27346 bposlem2 27347 bposlem5 27350 2lgslem3d1 27465 2sqreultlem 27509 2sqreunnltlem 27512 chebbnd1lem1 27531 chebbnd1lem3 27533 chebbnd1 27534 frgrregord013 30427 ex-ind-dvds 30493 wrdt2ind 32920 knoppndvlem12 36489 heiborlem6 37776 3lexlogpow5ineq1 42011 aks4d1p1 42033 2np3bcnp1 42101 2ap1caineq 42102 flt4lem7 42614 jm2.23 42953 sumnnodd 45551 wallispilem4 45989 wallispi2lem1 45992 wallispi2lem2 45993 wallispi2 45994 stirlinglem11 46005 dirkertrigeqlem1 46019 fouriersw 46152 fmtnorec4 47423 lighneallem2 47480 lighneallem3 47481 3exp4mod41 47490 opoeALTV 47557 fppr2odd 47605 8exp8mod9 47610 ackval2 48416 ackval2012 48425 |
Copyright terms: Public domain | W3C validator |