| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t1e2 | Structured version Visualization version GIF version | ||
| Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2t1e2 | ⊢ (2 · 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12320 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | 1 | mulridi 11244 | 1 ⊢ (2 · 1) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 1c1 11135 · cmul 11139 2c2 12300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-mulcom 11198 ax-mulass 11200 ax-distr 11201 ax-1rid 11204 ax-cnre 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-2 12308 |
| This theorem is referenced by: decbin2 12854 expubnd 14201 01sqrexlem7 15272 trirecip 15884 bpoly3 16079 fsumcube 16081 ege2le3 16111 cos2tsin 16202 cos2bnd 16211 odd2np1 16365 opoe 16387 flodddiv4 16439 2mulprm 16717 pythagtriplem4 16844 2503lem2 17162 2503lem3 17163 4001lem4 17168 4001prm 17169 htpycc 24935 pco1 24971 pcohtpylem 24975 pcopt 24978 pcorevlem 24982 ovolunlem1a 25454 cos2pi 26442 coskpi 26489 dcubic2 26811 dcubic 26813 basellem3 27050 chtublem 27179 bcp1ctr 27247 bclbnd 27248 bposlem1 27252 bposlem2 27253 bposlem5 27256 2lgslem3d1 27371 2sqreultlem 27415 2sqreunnltlem 27418 chebbnd1lem1 27437 chebbnd1lem3 27439 chebbnd1 27440 frgrregord013 30381 ex-ind-dvds 30447 wrdt2ind 32934 knoppndvlem12 36546 heiborlem6 37845 3lexlogpow5ineq1 42072 aks4d1p1 42094 2np3bcnp1 42162 2ap1caineq 42163 flt4lem7 42649 jm2.23 42987 sumnnodd 45626 wallispilem4 46064 wallispi2lem1 46067 wallispi2lem2 46068 wallispi2 46069 stirlinglem11 46080 dirkertrigeqlem1 46094 fouriersw 46227 fmtnorec4 47530 lighneallem2 47587 lighneallem3 47588 3exp4mod41 47597 opoeALTV 47664 fppr2odd 47712 8exp8mod9 47717 ackval2 48629 ackval2012 48638 |
| Copyright terms: Public domain | W3C validator |