Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2t1e2 | Structured version Visualization version GIF version |
Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
2t1e2 | ⊢ (2 · 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11953 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | mulid1i 10885 | 1 ⊢ (2 · 1) = 2 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 (class class class)co 7252 1c1 10778 · cmul 10782 2c2 11933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-mulcl 10839 ax-mulcom 10841 ax-mulass 10843 ax-distr 10844 ax-1rid 10847 ax-cnre 10850 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 df-ov 7255 df-2 11941 |
This theorem is referenced by: decbin2 12482 expubnd 13798 sqrlem7 14863 trirecip 15478 bpoly3 15671 fsumcube 15673 ege2le3 15702 cos2tsin 15791 cos2bnd 15800 odd2np1 15953 opoe 15975 flodddiv4 16025 2mulprm 16301 pythagtriplem4 16423 2503lem2 16742 2503lem3 16743 4001lem4 16748 4001prm 16749 htpycc 24024 pco1 24059 pcohtpylem 24063 pcopt 24066 pcorevlem 24070 ovolunlem1a 24540 cos2pi 25513 coskpi 25559 dcubic2 25874 dcubic 25876 basellem3 26112 chtublem 26239 bcp1ctr 26307 bclbnd 26308 bposlem1 26312 bposlem2 26313 bposlem5 26316 2lgslem3d1 26431 2sqreultlem 26475 2sqreunnltlem 26478 chebbnd1lem1 26497 chebbnd1lem3 26499 chebbnd1 26500 frgrregord013 28635 ex-ind-dvds 28701 wrdt2ind 31102 knoppndvlem12 34605 heiborlem6 35880 3lexlogpow5ineq1 39969 aks4d1p1 39990 2np3bcnp1 40000 2ap1caineq 40001 flt4lem7 40384 jm2.23 40706 sumnnodd 43034 wallispilem4 43472 wallispi2lem1 43475 wallispi2lem2 43476 wallispi2 43477 stirlinglem11 43488 dirkertrigeqlem1 43502 fouriersw 43635 fmtnorec4 44862 lighneallem2 44919 lighneallem3 44920 3exp4mod41 44929 opoeALTV 44996 fppr2odd 45044 8exp8mod9 45049 ackval2 45889 ackval2012 45898 |
Copyright terms: Public domain | W3C validator |