| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t1e2 | Structured version Visualization version GIF version | ||
| Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2t1e2 | ⊢ (2 · 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12200 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | 1 | mulridi 11116 | 1 ⊢ (2 · 1) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 · cmul 11011 2c2 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-mulcom 11070 ax-mulass 11072 ax-distr 11073 ax-1rid 11076 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 |
| This theorem is referenced by: decbin2 12729 expubnd 14085 01sqrexlem7 15155 trirecip 15770 bpoly3 15965 fsumcube 15967 ege2le3 15997 cos2tsin 16088 cos2bnd 16097 odd2np1 16252 opoe 16274 flodddiv4 16326 2mulprm 16604 pythagtriplem4 16731 2503lem2 17049 2503lem3 17050 4001lem4 17055 4001prm 17056 htpycc 24906 pco1 24942 pcohtpylem 24946 pcopt 24949 pcorevlem 24953 ovolunlem1a 25424 cos2pi 26412 coskpi 26459 dcubic2 26781 dcubic 26783 basellem3 27020 chtublem 27149 bcp1ctr 27217 bclbnd 27218 bposlem1 27222 bposlem2 27223 bposlem5 27226 2lgslem3d1 27341 2sqreultlem 27385 2sqreunnltlem 27388 chebbnd1lem1 27407 chebbnd1lem3 27409 chebbnd1 27410 frgrregord013 30375 ex-ind-dvds 30441 wrdt2ind 32934 knoppndvlem12 36567 heiborlem6 37866 3lexlogpow5ineq1 42157 aks4d1p1 42179 2np3bcnp1 42247 2ap1caineq 42248 flt4lem7 42762 jm2.23 43099 sumnnodd 45740 wallispilem4 46176 wallispi2lem1 46179 wallispi2lem2 46180 wallispi2 46181 stirlinglem11 46192 dirkertrigeqlem1 46206 fouriersw 46339 fmtnorec4 47659 lighneallem2 47716 lighneallem3 47717 3exp4mod41 47726 opoeALTV 47793 fppr2odd 47841 8exp8mod9 47846 ackval2 48793 ackval2012 48802 |
| Copyright terms: Public domain | W3C validator |