![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2t1e2 | Structured version Visualization version GIF version |
Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
2t1e2 | ⊢ (2 · 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12338 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | mulridi 11262 | 1 ⊢ (2 · 1) = 2 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 (class class class)co 7430 1c1 11153 · cmul 11157 2c2 12318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-mulcl 11214 ax-mulcom 11216 ax-mulass 11218 ax-distr 11219 ax-1rid 11222 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-2 12326 |
This theorem is referenced by: decbin2 12871 expubnd 14213 01sqrexlem7 15283 trirecip 15895 bpoly3 16090 fsumcube 16092 ege2le3 16122 cos2tsin 16211 cos2bnd 16220 odd2np1 16374 opoe 16396 flodddiv4 16448 2mulprm 16726 pythagtriplem4 16852 2503lem2 17171 2503lem3 17172 4001lem4 17177 4001prm 17178 htpycc 25025 pco1 25061 pcohtpylem 25065 pcopt 25068 pcorevlem 25072 ovolunlem1a 25544 cos2pi 26532 coskpi 26579 dcubic2 26901 dcubic 26903 basellem3 27140 chtublem 27269 bcp1ctr 27337 bclbnd 27338 bposlem1 27342 bposlem2 27343 bposlem5 27346 2lgslem3d1 27461 2sqreultlem 27505 2sqreunnltlem 27508 chebbnd1lem1 27527 chebbnd1lem3 27529 chebbnd1 27530 frgrregord013 30423 ex-ind-dvds 30489 wrdt2ind 32922 knoppndvlem12 36505 heiborlem6 37802 3lexlogpow5ineq1 42035 aks4d1p1 42057 2np3bcnp1 42125 2ap1caineq 42126 flt4lem7 42645 jm2.23 42984 sumnnodd 45585 wallispilem4 46023 wallispi2lem1 46026 wallispi2lem2 46027 wallispi2 46028 stirlinglem11 46039 dirkertrigeqlem1 46053 fouriersw 46186 fmtnorec4 47473 lighneallem2 47530 lighneallem3 47531 3exp4mod41 47540 opoeALTV 47607 fppr2odd 47655 8exp8mod9 47660 ackval2 48531 ackval2012 48540 |
Copyright terms: Public domain | W3C validator |