| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t1e2 | Structured version Visualization version GIF version | ||
| Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2t1e2 | ⊢ (2 · 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12237 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | 1 | mulridi 11154 | 1 ⊢ (2 · 1) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 · cmul 11049 2c2 12217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulcom 11108 ax-mulass 11110 ax-distr 11111 ax-1rid 11114 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 |
| This theorem is referenced by: decbin2 12766 expubnd 14119 01sqrexlem7 15190 trirecip 15805 bpoly3 16000 fsumcube 16002 ege2le3 16032 cos2tsin 16123 cos2bnd 16132 odd2np1 16287 opoe 16309 flodddiv4 16361 2mulprm 16639 pythagtriplem4 16766 2503lem2 17084 2503lem3 17085 4001lem4 17090 4001prm 17091 htpycc 24912 pco1 24948 pcohtpylem 24952 pcopt 24955 pcorevlem 24959 ovolunlem1a 25430 cos2pi 26418 coskpi 26465 dcubic2 26787 dcubic 26789 basellem3 27026 chtublem 27155 bcp1ctr 27223 bclbnd 27224 bposlem1 27228 bposlem2 27229 bposlem5 27232 2lgslem3d1 27347 2sqreultlem 27391 2sqreunnltlem 27394 chebbnd1lem1 27413 chebbnd1lem3 27415 chebbnd1 27416 frgrregord013 30374 ex-ind-dvds 30440 wrdt2ind 32925 knoppndvlem12 36504 heiborlem6 37803 3lexlogpow5ineq1 42035 aks4d1p1 42057 2np3bcnp1 42125 2ap1caineq 42126 flt4lem7 42640 jm2.23 42978 sumnnodd 45621 wallispilem4 46059 wallispi2lem1 46062 wallispi2lem2 46063 wallispi2 46064 stirlinglem11 46075 dirkertrigeqlem1 46089 fouriersw 46222 fmtnorec4 47543 lighneallem2 47600 lighneallem3 47601 3exp4mod41 47610 opoeALTV 47677 fppr2odd 47725 8exp8mod9 47730 ackval2 48664 ackval2012 48673 |
| Copyright terms: Public domain | W3C validator |