MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flodddiv4 Structured version   Visualization version   GIF version

Theorem flodddiv4 15754
Description: The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
flodddiv4 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))

Proof of Theorem flodddiv4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7142 . . . 4 (𝑁 = ((2 · 𝑀) + 1) → (𝑁 / 4) = (((2 · 𝑀) + 1) / 4))
2 2cnd 11703 . . . . . . 7 (𝑀 ∈ ℤ → 2 ∈ ℂ)
3 zcn 11974 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
42, 3mulcld 10650 . . . . . 6 (𝑀 ∈ ℤ → (2 · 𝑀) ∈ ℂ)
5 1cnd 10625 . . . . . 6 (𝑀 ∈ ℤ → 1 ∈ ℂ)
6 4cn 11710 . . . . . . . 8 4 ∈ ℂ
7 4ne0 11733 . . . . . . . 8 4 ≠ 0
86, 7pm3.2i 474 . . . . . . 7 (4 ∈ ℂ ∧ 4 ≠ 0)
98a1i 11 . . . . . 6 (𝑀 ∈ ℤ → (4 ∈ ℂ ∧ 4 ≠ 0))
10 divdir 11312 . . . . . 6 (((2 · 𝑀) ∈ ℂ ∧ 1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((2 · 𝑀) + 1) / 4) = (((2 · 𝑀) / 4) + (1 / 4)))
114, 5, 9, 10syl3anc 1368 . . . . 5 (𝑀 ∈ ℤ → (((2 · 𝑀) + 1) / 4) = (((2 · 𝑀) / 4) + (1 / 4)))
12 2t2e4 11789 . . . . . . . . . 10 (2 · 2) = 4
1312eqcomi 2807 . . . . . . . . 9 4 = (2 · 2)
1413a1i 11 . . . . . . . 8 (𝑀 ∈ ℤ → 4 = (2 · 2))
1514oveq2d 7151 . . . . . . 7 (𝑀 ∈ ℤ → ((2 · 𝑀) / 4) = ((2 · 𝑀) / (2 · 2)))
16 2ne0 11729 . . . . . . . . 9 2 ≠ 0
1716a1i 11 . . . . . . . 8 (𝑀 ∈ ℤ → 2 ≠ 0)
183, 2, 2, 17, 17divcan5d 11431 . . . . . . 7 (𝑀 ∈ ℤ → ((2 · 𝑀) / (2 · 2)) = (𝑀 / 2))
1915, 18eqtrd 2833 . . . . . 6 (𝑀 ∈ ℤ → ((2 · 𝑀) / 4) = (𝑀 / 2))
2019oveq1d 7150 . . . . 5 (𝑀 ∈ ℤ → (((2 · 𝑀) / 4) + (1 / 4)) = ((𝑀 / 2) + (1 / 4)))
2111, 20eqtrd 2833 . . . 4 (𝑀 ∈ ℤ → (((2 · 𝑀) + 1) / 4) = ((𝑀 / 2) + (1 / 4)))
221, 21sylan9eqr 2855 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (𝑁 / 4) = ((𝑀 / 2) + (1 / 4)))
2322fveq2d 6649 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = (⌊‘((𝑀 / 2) + (1 / 4))))
24 iftrue 4431 . . . . . . 7 (2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (𝑀 / 2))
2524adantr 484 . . . . . 6 ((2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (𝑀 / 2))
26 1re 10630 . . . . . . . . 9 1 ∈ ℝ
27 0le1 11152 . . . . . . . . 9 0 ≤ 1
28 4re 11709 . . . . . . . . 9 4 ∈ ℝ
29 4pos 11732 . . . . . . . . 9 0 < 4
30 divge0 11498 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
3126, 27, 28, 29, 30mp4an 692 . . . . . . . 8 0 ≤ (1 / 4)
32 1lt4 11801 . . . . . . . . 9 1 < 4
33 recgt1 11525 . . . . . . . . . 10 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
3428, 29, 33mp2an 691 . . . . . . . . 9 (1 < 4 ↔ (1 / 4) < 1)
3532, 34mpbi 233 . . . . . . . 8 (1 / 4) < 1
3631, 35pm3.2i 474 . . . . . . 7 (0 ≤ (1 / 4) ∧ (1 / 4) < 1)
37 evend2 15698 . . . . . . . . 9 (𝑀 ∈ ℤ → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ))
3837biimpac 482 . . . . . . . 8 ((2 ∥ 𝑀𝑀 ∈ ℤ) → (𝑀 / 2) ∈ ℤ)
39 4nn 11708 . . . . . . . . 9 4 ∈ ℕ
40 nnrecre 11667 . . . . . . . . 9 (4 ∈ ℕ → (1 / 4) ∈ ℝ)
4139, 40ax-mp 5 . . . . . . . 8 (1 / 4) ∈ ℝ
42 flbi2 13182 . . . . . . . 8 (((𝑀 / 2) ∈ ℤ ∧ (1 / 4) ∈ ℝ) → ((⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2) ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4338, 41, 42sylancl 589 . . . . . . 7 ((2 ∥ 𝑀𝑀 ∈ ℤ) → ((⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2) ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4436, 43mpbiri 261 . . . . . 6 ((2 ∥ 𝑀𝑀 ∈ ℤ) → (⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2))
4525, 44eqtr4d 2836 . . . . 5 ((2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
46 iffalse 4434 . . . . . . 7 (¬ 2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = ((𝑀 − 1) / 2))
4746adantr 484 . . . . . 6 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = ((𝑀 − 1) / 2))
48 odd2np1 15682 . . . . . . . 8 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑀))
49 ax-1cn 10584 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
50 2cnne0 11835 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℂ ∧ 2 ≠ 0)
51 divcan5 11331 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · 2)) = (1 / 2))
5249, 50, 50, 51mp3an 1458 . . . . . . . . . . . . . . . . . . . 20 ((2 · 1) / (2 · 2)) = (1 / 2)
53 2t1e2 11788 . . . . . . . . . . . . . . . . . . . . 21 (2 · 1) = 2
5453, 12oveq12i 7147 . . . . . . . . . . . . . . . . . . . 20 ((2 · 1) / (2 · 2)) = (2 / 4)
5552, 54eqtr3i 2823 . . . . . . . . . . . . . . . . . . 19 (1 / 2) = (2 / 4)
5655oveq1i 7145 . . . . . . . . . . . . . . . . . 18 ((1 / 2) + (1 / 4)) = ((2 / 4) + (1 / 4))
57 2cn 11700 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
5857, 49, 6, 7divdiri 11386 . . . . . . . . . . . . . . . . . 18 ((2 + 1) / 4) = ((2 / 4) + (1 / 4))
59 2p1e3 11767 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = 3
6059oveq1i 7145 . . . . . . . . . . . . . . . . . 18 ((2 + 1) / 4) = (3 / 4)
6156, 58, 603eqtr2i 2827 . . . . . . . . . . . . . . . . 17 ((1 / 2) + (1 / 4)) = (3 / 4)
6261a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → ((1 / 2) + (1 / 4)) = (3 / 4))
6362oveq2d 7151 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (𝑥 + ((1 / 2) + (1 / 4))) = (𝑥 + (3 / 4)))
6463fveq2d 6649 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = (⌊‘(𝑥 + (3 / 4))))
65 3re 11705 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
66 0re 10632 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
67 3pos 11730 . . . . . . . . . . . . . . . . . 18 0 < 3
6866, 65, 67ltleii 10752 . . . . . . . . . . . . . . . . 17 0 ≤ 3
69 divge0 11498 . . . . . . . . . . . . . . . . 17 (((3 ∈ ℝ ∧ 0 ≤ 3) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (3 / 4))
7065, 68, 28, 29, 69mp4an 692 . . . . . . . . . . . . . . . 16 0 ≤ (3 / 4)
71 3lt4 11799 . . . . . . . . . . . . . . . . 17 3 < 4
72 nnrp 12388 . . . . . . . . . . . . . . . . . . 19 (4 ∈ ℕ → 4 ∈ ℝ+)
7339, 72ax-mp 5 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ+
74 divlt1lt 12446 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 4 ∈ ℝ+) → ((3 / 4) < 1 ↔ 3 < 4))
7565, 73, 74mp2an 691 . . . . . . . . . . . . . . . . 17 ((3 / 4) < 1 ↔ 3 < 4)
7671, 75mpbir 234 . . . . . . . . . . . . . . . 16 (3 / 4) < 1
7770, 76pm3.2i 474 . . . . . . . . . . . . . . 15 (0 ≤ (3 / 4) ∧ (3 / 4) < 1)
7865, 28, 7redivcli 11396 . . . . . . . . . . . . . . . 16 (3 / 4) ∈ ℝ
79 flbi2 13182 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (3 / 4) ∈ ℝ) → ((⌊‘(𝑥 + (3 / 4))) = 𝑥 ↔ (0 ≤ (3 / 4) ∧ (3 / 4) < 1)))
8078, 79mpan2 690 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → ((⌊‘(𝑥 + (3 / 4))) = 𝑥 ↔ (0 ≤ (3 / 4) ∧ (3 / 4) < 1)))
8177, 80mpbiri 261 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (⌊‘(𝑥 + (3 / 4))) = 𝑥)
8264, 81eqtrd 2833 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = 𝑥)
8382adantr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = 𝑥)
84 oveq1 7142 . . . . . . . . . . . . . . . . 17 (𝑀 = ((2 · 𝑥) + 1) → (𝑀 / 2) = (((2 · 𝑥) + 1) / 2))
8584eqcoms 2806 . . . . . . . . . . . . . . . 16 (((2 · 𝑥) + 1) = 𝑀 → (𝑀 / 2) = (((2 · 𝑥) + 1) / 2))
86 2z 12002 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℤ
8786a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → 2 ∈ ℤ)
88 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
8987, 88zmulcld 12081 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℤ)
9089zcnd 12076 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
91 1cnd 10625 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → 1 ∈ ℂ)
9250a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
93 divdir 11312 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑥) + 1) / 2) = (((2 · 𝑥) / 2) + (1 / 2)))
9490, 91, 92, 93syl3anc 1368 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) / 2) = (((2 · 𝑥) / 2) + (1 / 2)))
95 zcn 11974 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
96 2cnd 11703 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 2 ∈ ℂ)
9716a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 2 ≠ 0)
9895, 96, 97divcan3d 11410 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → ((2 · 𝑥) / 2) = 𝑥)
9998oveq1d 7150 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (((2 · 𝑥) / 2) + (1 / 2)) = (𝑥 + (1 / 2)))
10094, 99eqtrd 2833 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) / 2) = (𝑥 + (1 / 2)))
10185, 100sylan9eqr 2855 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (𝑀 / 2) = (𝑥 + (1 / 2)))
102101oveq1d 7150 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 / 2) + (1 / 4)) = ((𝑥 + (1 / 2)) + (1 / 4)))
103 halfcn 11840 . . . . . . . . . . . . . . . . 17 (1 / 2) ∈ ℂ
104103a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (1 / 2) ∈ ℂ)
1056, 7reccli 11359 . . . . . . . . . . . . . . . . 17 (1 / 4) ∈ ℂ
106105a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (1 / 4) ∈ ℂ)
10795, 104, 106addassd 10652 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → ((𝑥 + (1 / 2)) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
108107adantr 484 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑥 + (1 / 2)) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
109102, 108eqtrd 2833 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 / 2) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
110109fveq2d 6649 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (⌊‘((𝑀 / 2) + (1 / 4))) = (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))))
111 oveq1 7142 . . . . . . . . . . . . . . . 16 (𝑀 = ((2 · 𝑥) + 1) → (𝑀 − 1) = (((2 · 𝑥) + 1) − 1))
112111eqcoms 2806 . . . . . . . . . . . . . . 15 (((2 · 𝑥) + 1) = 𝑀 → (𝑀 − 1) = (((2 · 𝑥) + 1) − 1))
113 pncan1 11053 . . . . . . . . . . . . . . . 16 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) − 1) = (2 · 𝑥))
11490, 113syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) − 1) = (2 · 𝑥))
115112, 114sylan9eqr 2855 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (𝑀 − 1) = (2 · 𝑥))
116115oveq1d 7150 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = ((2 · 𝑥) / 2))
11798adantr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((2 · 𝑥) / 2) = 𝑥)
118116, 117eqtrd 2833 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = 𝑥)
11983, 110, 1183eqtr4rd 2844 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4))))
120119ex 416 . . . . . . . . . 10 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
121120adantl 485 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
122121rexlimdva 3243 . . . . . . . 8 (𝑀 ∈ ℤ → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
12348, 122sylbid 243 . . . . . . 7 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
124123impcom 411 . . . . . 6 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4))))
12547, 124eqtrd 2833 . . . . 5 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
12645, 125pm2.61ian 811 . . . 4 (𝑀 ∈ ℤ → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
127126eqcomd 2804 . . 3 (𝑀 ∈ ℤ → (⌊‘((𝑀 / 2) + (1 / 4))) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
128127adantr 484 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘((𝑀 / 2) + (1 / 4))) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
12923, 128eqtrd 2833 1 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  ifcif 4425   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  4c4 11682  cz 11969  +crp 12377  cfl 13155  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-dvds 15600
This theorem is referenced by:  2lgslem1c  25977
  Copyright terms: Public domain W3C validator