Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi2 Structured version   Visualization version   GIF version

Theorem wallispi2 46058
Description: An alternative version of Wallis' formula for π ; this second formula uses factorials and it is later used to prove Stirling's approximation formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
wallispi2.1 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
Assertion
Ref Expression
wallispi2 𝑉 ⇝ (π / 2)

Proof of Theorem wallispi2
Dummy variables 𝑘 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))) = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
2 1cnd 11129 . . . . . 6 (𝑛 ∈ ℕ → 1 ∈ ℂ)
3 2cnd 12224 . . . . . . . 8 (𝑛 ∈ ℕ → 2 ∈ ℂ)
4 nncn 12154 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
53, 4mulcld 11154 . . . . . . 7 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
65, 2addcld 11153 . . . . . 6 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℂ)
7 elnnuz 12797 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
87biimpi 216 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
9 eqidd 2730 . . . . . . . . . 10 (𝑚 ∈ (1...𝑛) → (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))) = (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))
10 simpr 484 . . . . . . . . . . . . 13 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → 𝑘 = 𝑚)
1110oveq2d 7369 . . . . . . . . . . . 12 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → (2 · 𝑘) = (2 · 𝑚))
1211oveq1d 7368 . . . . . . . . . . 11 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → ((2 · 𝑘)↑4) = ((2 · 𝑚)↑4))
1311oveq1d 7368 . . . . . . . . . . . . 13 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → ((2 · 𝑘) − 1) = ((2 · 𝑚) − 1))
1411, 13oveq12d 7371 . . . . . . . . . . . 12 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → ((2 · 𝑘) · ((2 · 𝑘) − 1)) = ((2 · 𝑚) · ((2 · 𝑚) − 1)))
1514oveq1d 7368 . . . . . . . . . . 11 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2) = (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2))
1612, 15oveq12d 7371 . . . . . . . . . 10 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)) = (((2 · 𝑚)↑4) / (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2)))
17 elfznn 13474 . . . . . . . . . 10 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
18 2cnd 12224 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → 2 ∈ ℂ)
1917nncnd 12162 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℂ)
2018, 19mulcld 11154 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ∈ ℂ)
21 4nn0 12421 . . . . . . . . . . . . 13 4 ∈ ℕ0
2221a1i 11 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → 4 ∈ ℕ0)
2320, 22expcld 14071 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚)↑4) ∈ ℂ)
24 1cnd 11129 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → 1 ∈ ℂ)
2520, 24subcld 11493 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) − 1) ∈ ℂ)
2620, 25mulcld 11154 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) · ((2 · 𝑚) − 1)) ∈ ℂ)
2726sqcld 14069 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑛) → (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2) ∈ ℂ)
28 2ne0 12250 . . . . . . . . . . . . . . 15 2 ≠ 0
2928a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → 2 ≠ 0)
3017nnne0d 12196 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → 𝑚 ≠ 0)
3118, 19, 29, 30mulne0d 11790 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ≠ 0)
32 1red 11135 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...𝑛) → 1 ∈ ℝ)
33 2re 12220 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
3433a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 2 ∈ ℝ)
3534, 32remulcld 11164 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → (2 · 1) ∈ ℝ)
3617nnred 12161 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℝ)
3734, 36remulcld 11164 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ∈ ℝ)
38 1lt2 12312 . . . . . . . . . . . . . . . . . 18 1 < 2
3938a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 1 < 2)
40 2t1e2 12304 . . . . . . . . . . . . . . . . 17 (2 · 1) = 2
4139, 40breqtrrdi 5137 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → 1 < (2 · 1))
42 0le2 12248 . . . . . . . . . . . . . . . . . 18 0 ≤ 2
4342a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 0 ≤ 2)
44 elfzle1 13448 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 1 ≤ 𝑚)
4532, 36, 34, 43, 44lemul2ad 12083 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → (2 · 1) ≤ (2 · 𝑚))
4632, 35, 37, 41, 45ltletrd 11294 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...𝑛) → 1 < (2 · 𝑚))
4732, 46gtned 11269 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ≠ 1)
4820, 24, 47subne0d 11502 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) − 1) ≠ 0)
4920, 25, 31, 48mulne0d 11790 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) · ((2 · 𝑚) − 1)) ≠ 0)
50 2z 12525 . . . . . . . . . . . . 13 2 ∈ ℤ
5150a1i 11 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → 2 ∈ ℤ)
5226, 49, 51expne0d 14077 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑛) → (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2) ≠ 0)
5323, 27, 52divcld 11918 . . . . . . . . . 10 (𝑚 ∈ (1...𝑛) → (((2 · 𝑚)↑4) / (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2)) ∈ ℂ)
549, 16, 17, 53fvmptd 6941 . . . . . . . . 9 (𝑚 ∈ (1...𝑛) → ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘𝑚) = (((2 · 𝑚)↑4) / (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2)))
5554, 53eqeltrd 2828 . . . . . . . 8 (𝑚 ∈ (1...𝑛) → ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘𝑚) ∈ ℂ)
5655adantl 481 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘𝑚) ∈ ℂ)
57 mulcl 11112 . . . . . . . 8 ((𝑚 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑚 · 𝑤) ∈ ℂ)
5857adantl 481 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝑚 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑚 · 𝑤) ∈ ℂ)
598, 56, 58seqcl 13947 . . . . . 6 (𝑛 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) ∈ ℂ)
60 2nn 12219 . . . . . . . . . 10 2 ∈ ℕ
6160a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℕ)
62 id 22 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
6361, 62nnmulcld 12199 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
6463peano2nnd 12163 . . . . . . 7 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℕ)
6564nnne0d 12196 . . . . . 6 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
662, 6, 59, 65div32d 11941 . . . . 5 (𝑛 ∈ ℕ → ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)) = (1 · ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1))))
6759, 6, 65divcld 11918 . . . . . 6 (𝑛 ∈ ℕ → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1)) ∈ ℂ)
6867mullidd 11152 . . . . 5 (𝑛 ∈ ℕ → (1 · ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1))) = ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1)))
69 wallispi2lem2 46057 . . . . . 6 (𝑛 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) = (((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)))
7069oveq1d 7368 . . . . 5 (𝑛 ∈ ℕ → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1)) = ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
7166, 68, 703eqtrd 2768 . . . 4 (𝑛 ∈ ℕ → ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)) = ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
7271mpteq2ia 5190 . . 3 (𝑛 ∈ ℕ ↦ ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛))) = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
73 wallispi2lem1 46056 . . . 4 (𝑛 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))‘𝑛) = ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)))
7473mpteq2ia 5190 . . 3 (𝑛 ∈ ℕ ↦ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))‘𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)))
75 wallispi2.1 . . 3 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
7672, 74, 753eqtr4ri 2763 . 2 𝑉 = (𝑛 ∈ ℕ ↦ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))‘𝑛))
771, 76wallispi 46055 1 𝑉 ⇝ (π / 2)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  4c4 12203  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  seqcseq 13926  cexp 13986  !cfa 14198  cli 15409  πcpi 15991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-symdif 4206  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-itg2 25538  df-ibl 25539  df-itg 25540  df-0p 25587  df-limc 25783  df-dv 25784
This theorem is referenced by:  stirlinglem15  46073
  Copyright terms: Public domain W3C validator