Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi2 Structured version   Visualization version   GIF version

Theorem wallispi2 41231
Description: An alternative version of Wallis' formula for π ; this second formula uses factorials and it is later used to prove Stirling's approximation formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
wallispi2.1 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
Assertion
Ref Expression
wallispi2 𝑉 ⇝ (π / 2)

Proof of Theorem wallispi2
Dummy variables 𝑘 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . 2 (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))) = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
2 1cnd 10373 . . . . . 6 (𝑛 ∈ ℕ → 1 ∈ ℂ)
3 2cnd 11458 . . . . . . . 8 (𝑛 ∈ ℕ → 2 ∈ ℂ)
4 nncn 11388 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
53, 4mulcld 10399 . . . . . . 7 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
65, 2addcld 10398 . . . . . 6 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℂ)
7 elnnuz 12035 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
87biimpi 208 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
9 eqidd 2779 . . . . . . . . . 10 (𝑚 ∈ (1...𝑛) → (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))) = (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))
10 simpr 479 . . . . . . . . . . . . 13 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → 𝑘 = 𝑚)
1110oveq2d 6940 . . . . . . . . . . . 12 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → (2 · 𝑘) = (2 · 𝑚))
1211oveq1d 6939 . . . . . . . . . . 11 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → ((2 · 𝑘)↑4) = ((2 · 𝑚)↑4))
1311oveq1d 6939 . . . . . . . . . . . . 13 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → ((2 · 𝑘) − 1) = ((2 · 𝑚) − 1))
1411, 13oveq12d 6942 . . . . . . . . . . . 12 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → ((2 · 𝑘) · ((2 · 𝑘) − 1)) = ((2 · 𝑚) · ((2 · 𝑚) − 1)))
1514oveq1d 6939 . . . . . . . . . . 11 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2) = (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2))
1612, 15oveq12d 6942 . . . . . . . . . 10 ((𝑚 ∈ (1...𝑛) ∧ 𝑘 = 𝑚) → (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)) = (((2 · 𝑚)↑4) / (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2)))
17 elfznn 12692 . . . . . . . . . 10 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
18 2cnd 11458 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → 2 ∈ ℂ)
1917nncnd 11397 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℂ)
2018, 19mulcld 10399 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ∈ ℂ)
21 4nn0 11668 . . . . . . . . . . . . 13 4 ∈ ℕ0
2221a1i 11 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → 4 ∈ ℕ0)
2320, 22expcld 13332 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚)↑4) ∈ ℂ)
24 1cnd 10373 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → 1 ∈ ℂ)
2520, 24subcld 10736 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) − 1) ∈ ℂ)
2620, 25mulcld 10399 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) · ((2 · 𝑚) − 1)) ∈ ℂ)
2726sqcld 13330 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑛) → (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2) ∈ ℂ)
28 2ne0 11491 . . . . . . . . . . . . . . 15 2 ≠ 0
2928a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → 2 ≠ 0)
3017nnne0d 11430 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → 𝑚 ≠ 0)
3118, 19, 29, 30mulne0d 11030 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ≠ 0)
32 1red 10379 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...𝑛) → 1 ∈ ℝ)
33 2re 11454 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
3433a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 2 ∈ ℝ)
3534, 32remulcld 10409 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → (2 · 1) ∈ ℝ)
3617nnred 11396 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℝ)
3734, 36remulcld 10409 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ∈ ℝ)
38 1lt2 11558 . . . . . . . . . . . . . . . . . 18 1 < 2
3938a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 1 < 2)
40 2t1e2 11550 . . . . . . . . . . . . . . . . 17 (2 · 1) = 2
4139, 40syl6breqr 4930 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → 1 < (2 · 1))
42 0le2 11489 . . . . . . . . . . . . . . . . . 18 0 ≤ 2
4342a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 0 ≤ 2)
44 elfzle1 12666 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...𝑛) → 1 ≤ 𝑚)
4532, 36, 34, 43, 44lemul2ad 11321 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...𝑛) → (2 · 1) ≤ (2 · 𝑚))
4632, 35, 37, 41, 45ltletrd 10538 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...𝑛) → 1 < (2 · 𝑚))
4732, 46gtned 10513 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...𝑛) → (2 · 𝑚) ≠ 1)
4820, 24, 47subne0d 10745 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) − 1) ≠ 0)
4920, 25, 31, 48mulne0d 11030 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → ((2 · 𝑚) · ((2 · 𝑚) − 1)) ≠ 0)
50 2z 11766 . . . . . . . . . . . . 13 2 ∈ ℤ
5150a1i 11 . . . . . . . . . . . 12 (𝑚 ∈ (1...𝑛) → 2 ∈ ℤ)
5226, 49, 51expne0d 13338 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑛) → (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2) ≠ 0)
5323, 27, 52divcld 11154 . . . . . . . . . 10 (𝑚 ∈ (1...𝑛) → (((2 · 𝑚)↑4) / (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2)) ∈ ℂ)
549, 16, 17, 53fvmptd 6550 . . . . . . . . 9 (𝑚 ∈ (1...𝑛) → ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘𝑚) = (((2 · 𝑚)↑4) / (((2 · 𝑚) · ((2 · 𝑚) − 1))↑2)))
5554, 53eqeltrd 2859 . . . . . . . 8 (𝑚 ∈ (1...𝑛) → ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘𝑚) ∈ ℂ)
5655adantl 475 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2)))‘𝑚) ∈ ℂ)
57 mulcl 10358 . . . . . . . 8 ((𝑚 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑚 · 𝑤) ∈ ℂ)
5857adantl 475 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝑚 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑚 · 𝑤) ∈ ℂ)
598, 56, 58seqcl 13144 . . . . . 6 (𝑛 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) ∈ ℂ)
60 2nn 11453 . . . . . . . . . 10 2 ∈ ℕ
6160a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℕ)
62 id 22 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
6361, 62nnmulcld 11433 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
6463peano2nnd 11398 . . . . . . 7 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℕ)
6564nnne0d 11430 . . . . . 6 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
662, 6, 59, 65div32d 11177 . . . . 5 (𝑛 ∈ ℕ → ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)) = (1 · ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1))))
6759, 6, 65divcld 11154 . . . . . 6 (𝑛 ∈ ℕ → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1)) ∈ ℂ)
6867mulid2d 10397 . . . . 5 (𝑛 ∈ ℕ → (1 · ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1))) = ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1)))
69 wallispi2lem2 41230 . . . . . 6 (𝑛 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) = (((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)))
7069oveq1d 6939 . . . . 5 (𝑛 ∈ ℕ → ((seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛) / ((2 · 𝑛) + 1)) = ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
7166, 68, 703eqtrd 2818 . . . 4 (𝑛 ∈ ℕ → ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)) = ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
7271mpteq2ia 4977 . . 3 (𝑛 ∈ ℕ ↦ ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛))) = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
73 wallispi2lem1 41229 . . . 4 (𝑛 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))‘𝑛) = ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)))
7473mpteq2ia 4977 . . 3 (𝑛 ∈ ℕ ↦ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))‘𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((2 · 𝑛) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑛)))
75 wallispi2.1 . . 3 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
7672, 74, 753eqtr4ri 2813 . 2 𝑉 = (𝑛 ∈ ℕ ↦ (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))‘𝑛))
771, 76wallispi 41228 1 𝑉 ⇝ (π / 2)
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1601  wcel 2107  wne 2969   class class class wbr 4888  cmpt 4967  cfv 6137  (class class class)co 6924  cc 10272  cr 10273  0cc0 10274  1c1 10275   + caddc 10277   · cmul 10279   < clt 10413  cle 10414  cmin 10608   / cdiv 11035  cn 11379  2c2 11435  4c4 11437  0cn0 11647  cz 11733  cuz 11997  ...cfz 12648  seqcseq 13124  cexp 13183  !cfa 13384  cli 14632  πcpi 15208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cc 9594  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-symdif 4067  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-disj 4857  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-ofr 7177  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-omul 7850  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-acn 9103  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-q 12101  df-rp 12143  df-xneg 12262  df-xadd 12263  df-xmul 12264  df-ioo 12496  df-ioc 12497  df-ico 12498  df-icc 12499  df-fz 12649  df-fzo 12790  df-fl 12917  df-mod 12993  df-seq 13125  df-exp 13184  df-fac 13385  df-bc 13414  df-hash 13442  df-shft 14220  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-limsup 14619  df-clim 14636  df-rlim 14637  df-sum 14834  df-ef 15209  df-sin 15211  df-cos 15212  df-pi 15214  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-starv 16364  df-sca 16365  df-vsca 16366  df-ip 16367  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-hom 16373  df-cco 16374  df-rest 16480  df-topn 16481  df-0g 16499  df-gsum 16500  df-topgen 16501  df-pt 16502  df-prds 16505  df-xrs 16559  df-qtop 16564  df-imas 16565  df-xps 16567  df-mre 16643  df-mrc 16644  df-acs 16646  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-submnd 17733  df-mulg 17939  df-cntz 18144  df-cmn 18592  df-psmet 20145  df-xmet 20146  df-met 20147  df-bl 20148  df-mopn 20149  df-fbas 20150  df-fg 20151  df-cnfld 20154  df-top 21117  df-topon 21134  df-topsp 21156  df-bases 21169  df-cld 21242  df-ntr 21243  df-cls 21244  df-nei 21321  df-lp 21359  df-perf 21360  df-cn 21450  df-cnp 21451  df-haus 21538  df-cmp 21610  df-tx 21785  df-hmeo 21978  df-fil 22069  df-fm 22161  df-flim 22162  df-flf 22163  df-xms 22544  df-ms 22545  df-tms 22546  df-cncf 23100  df-ovol 23679  df-vol 23680  df-mbf 23834  df-itg1 23835  df-itg2 23836  df-ibl 23837  df-itg 23838  df-0p 23885  df-limc 24078  df-dv 24079
This theorem is referenced by:  stirlinglem15  41246
  Copyright terms: Public domain W3C validator