![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flval3 | Structured version Visualization version GIF version |
Description: An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.) |
Ref | Expression |
---|---|
flval3 | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4078 | . . . . 5 ⊢ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℤ | |
2 | zssre 12565 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
3 | 1, 2 | sstri 3992 | . . . 4 ⊢ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ) |
5 | breq1 5152 | . . . . 5 ⊢ (𝑥 = (⌊‘𝐴) → (𝑥 ≤ 𝐴 ↔ (⌊‘𝐴) ≤ 𝐴)) | |
6 | flcl 13760 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
7 | flle 13764 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
8 | 5, 6, 7 | elrabd 3686 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}) |
9 | 8 | ne0d 4336 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ≠ ∅) |
10 | reflcl 13761 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
11 | breq1 5152 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 ≤ 𝐴 ↔ 𝑧 ≤ 𝐴)) | |
12 | 11 | elrab 3684 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ↔ (𝑧 ∈ ℤ ∧ 𝑧 ≤ 𝐴)) |
13 | flge 13770 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ 𝐴 ↔ 𝑧 ≤ (⌊‘𝐴))) | |
14 | 13 | biimpd 228 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ 𝐴 → 𝑧 ≤ (⌊‘𝐴))) |
15 | 14 | expimpd 455 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℤ ∧ 𝑧 ≤ 𝐴) → 𝑧 ≤ (⌊‘𝐴))) |
16 | 12, 15 | biimtrid 241 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} → 𝑧 ≤ (⌊‘𝐴))) |
17 | 16 | ralrimiv 3146 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴)) |
18 | brralrspcev 5209 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℝ ∧ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) | |
19 | 10, 17, 18 | syl2anc 585 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) |
20 | 4, 9, 19, 8 | suprubd 12176 | . 2 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
21 | suprleub 12180 | . . . 4 ⊢ ((({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ ∧ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) ∧ (⌊‘𝐴) ∈ ℝ) → (sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴))) | |
22 | 4, 9, 19, 10, 21 | syl31anc 1374 | . . 3 ⊢ (𝐴 ∈ ℝ → (sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴))) |
23 | 17, 22 | mpbird 257 | . 2 ⊢ (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴)) |
24 | 4, 9, 19 | suprcld 12177 | . . 3 ⊢ (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ∈ ℝ) |
25 | 10, 24 | letri3d 11356 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ↔ ((⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ∧ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴)))) |
26 | 20, 23, 25 | mpbir2and 712 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 {crab 3433 ⊆ wss 3949 ∅c0 4323 class class class wbr 5149 ‘cfv 6544 supcsup 9435 ℝcr 11109 < clt 11248 ≤ cle 11249 ℤcz 12558 ⌊cfl 13755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fl 13757 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |