MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flval3 Structured version   Visualization version   GIF version

Theorem flval3 13276
Description: An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
flval3 (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴

Proof of Theorem flval3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3969 . . . . 5 {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℤ
2 zssre 12069 . . . . 5 ℤ ⊆ ℝ
31, 2sstri 3886 . . . 4 {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ
43a1i 11 . . 3 (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ)
5 breq1 5033 . . . . 5 (𝑥 = (⌊‘𝐴) → (𝑥𝐴 ↔ (⌊‘𝐴) ≤ 𝐴))
6 flcl 13256 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
7 flle 13260 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
85, 6, 7elrabd 3590 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴})
98ne0d 4224 . . 3 (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅)
10 reflcl 13257 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
11 breq1 5033 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1211elrab 3588 . . . . . 6 (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ↔ (𝑧 ∈ ℤ ∧ 𝑧𝐴))
13 flge 13266 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ≤ (⌊‘𝐴)))
1413biimpd 232 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ≤ (⌊‘𝐴)))
1514expimpd 457 . . . . . 6 (𝐴 ∈ ℝ → ((𝑧 ∈ ℤ ∧ 𝑧𝐴) → 𝑧 ≤ (⌊‘𝐴)))
1612, 15syl5bi 245 . . . . 5 (𝐴 ∈ ℝ → (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} → 𝑧 ≤ (⌊‘𝐴)))
1716ralrimiv 3095 . . . 4 (𝐴 ∈ ℝ → ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴))
18 brralrspcev 5090 . . . 4 (((⌊‘𝐴) ∈ ℝ ∧ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦)
1910, 17, 18syl2anc 587 . . 3 (𝐴 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦)
204, 9, 19, 8suprubd 11680 . 2 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
21 suprleub 11684 . . . 4 ((({𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ ∧ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦) ∧ (⌊‘𝐴) ∈ ℝ) → (sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)))
224, 9, 19, 10, 21syl31anc 1374 . . 3 (𝐴 ∈ ℝ → (sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)))
2317, 22mpbird 260 . 2 (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴))
244, 9, 19suprcld 11681 . . 3 (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2510, 24letri3d 10860 . 2 (𝐴 ∈ ℝ → ((⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ↔ ((⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ∧ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴))))
2620, 23, 25mpbir2and 713 1 (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2934  wral 3053  wrex 3054  {crab 3057  wss 3843  c0 4211   class class class wbr 5030  cfv 6339  supcsup 8977  cr 10614   < clt 10753  cle 10754  cz 12062  cfl 13251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-fl 13253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator