MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flval3 Structured version   Visualization version   GIF version

Theorem flval3 13784
Description: An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
flval3 (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴

Proof of Theorem flval3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4046 . . . . 5 {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℤ
2 zssre 12543 . . . . 5 ℤ ⊆ ℝ
31, 2sstri 3959 . . . 4 {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ
43a1i 11 . . 3 (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ)
5 breq1 5113 . . . . 5 (𝑥 = (⌊‘𝐴) → (𝑥𝐴 ↔ (⌊‘𝐴) ≤ 𝐴))
6 flcl 13764 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
7 flle 13768 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
85, 6, 7elrabd 3664 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴})
98ne0d 4308 . . 3 (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅)
10 reflcl 13765 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
11 breq1 5113 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1211elrab 3662 . . . . . 6 (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ↔ (𝑧 ∈ ℤ ∧ 𝑧𝐴))
13 flge 13774 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ≤ (⌊‘𝐴)))
1413biimpd 229 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ≤ (⌊‘𝐴)))
1514expimpd 453 . . . . . 6 (𝐴 ∈ ℝ → ((𝑧 ∈ ℤ ∧ 𝑧𝐴) → 𝑧 ≤ (⌊‘𝐴)))
1612, 15biimtrid 242 . . . . 5 (𝐴 ∈ ℝ → (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} → 𝑧 ≤ (⌊‘𝐴)))
1716ralrimiv 3125 . . . 4 (𝐴 ∈ ℝ → ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴))
18 brralrspcev 5170 . . . 4 (((⌊‘𝐴) ∈ ℝ ∧ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦)
1910, 17, 18syl2anc 584 . . 3 (𝐴 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦)
204, 9, 19, 8suprubd 12152 . 2 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
21 suprleub 12156 . . . 4 ((({𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ ∧ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦) ∧ (⌊‘𝐴) ∈ ℝ) → (sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)))
224, 9, 19, 10, 21syl31anc 1375 . . 3 (𝐴 ∈ ℝ → (sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)))
2317, 22mpbird 257 . 2 (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴))
244, 9, 19suprcld 12153 . . 3 (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2510, 24letri3d 11323 . 2 (𝐴 ∈ ℝ → ((⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ↔ ((⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ∧ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴))))
2620, 23, 25mpbir2and 713 1 (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3917  c0 4299   class class class wbr 5110  cfv 6514  supcsup 9398  cr 11074   < clt 11215  cle 11216  cz 12536  cfl 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fl 13761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator