![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flval3 | Structured version Visualization version GIF version |
Description: An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.) |
Ref | Expression |
---|---|
flval3 | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4103 | . . . . 5 ⊢ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℤ | |
2 | zssre 12646 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
3 | 1, 2 | sstri 4018 | . . . 4 ⊢ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ) |
5 | breq1 5169 | . . . . 5 ⊢ (𝑥 = (⌊‘𝐴) → (𝑥 ≤ 𝐴 ↔ (⌊‘𝐴) ≤ 𝐴)) | |
6 | flcl 13846 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
7 | flle 13850 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
8 | 5, 6, 7 | elrabd 3710 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}) |
9 | 8 | ne0d 4365 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ≠ ∅) |
10 | reflcl 13847 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
11 | breq1 5169 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 ≤ 𝐴 ↔ 𝑧 ≤ 𝐴)) | |
12 | 11 | elrab 3708 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ↔ (𝑧 ∈ ℤ ∧ 𝑧 ≤ 𝐴)) |
13 | flge 13856 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ 𝐴 ↔ 𝑧 ≤ (⌊‘𝐴))) | |
14 | 13 | biimpd 229 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ 𝐴 → 𝑧 ≤ (⌊‘𝐴))) |
15 | 14 | expimpd 453 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℤ ∧ 𝑧 ≤ 𝐴) → 𝑧 ≤ (⌊‘𝐴))) |
16 | 12, 15 | biimtrid 242 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} → 𝑧 ≤ (⌊‘𝐴))) |
17 | 16 | ralrimiv 3151 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴)) |
18 | brralrspcev 5226 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℝ ∧ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) | |
19 | 10, 17, 18 | syl2anc 583 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) |
20 | 4, 9, 19, 8 | suprubd 12257 | . 2 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
21 | suprleub 12261 | . . . 4 ⊢ ((({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ ∧ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) ∧ (⌊‘𝐴) ∈ ℝ) → (sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴))) | |
22 | 4, 9, 19, 10, 21 | syl31anc 1373 | . . 3 ⊢ (𝐴 ∈ ℝ → (sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴))) |
23 | 17, 22 | mpbird 257 | . 2 ⊢ (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴)) |
24 | 4, 9, 19 | suprcld 12258 | . . 3 ⊢ (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ∈ ℝ) |
25 | 10, 24 | letri3d 11432 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ↔ ((⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ∧ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴)))) |
26 | 20, 23, 25 | mpbir2and 712 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 supcsup 9509 ℝcr 11183 < clt 11324 ≤ cle 11325 ℤcz 12639 ⌊cfl 13841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fl 13843 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |