Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  flval3 Structured version   Visualization version   GIF version

Theorem flval3 13035
 Description: An alternate way to define the floor (greatest integer) function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
flval3 (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴

Proof of Theorem flval3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3977 . . . . 5 {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℤ
2 zssre 11836 . . . . 5 ℤ ⊆ ℝ
31, 2sstri 3898 . . . 4 {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ
43a1i 11 . . 3 (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ)
5 breq1 4965 . . . . 5 (𝑥 = (⌊‘𝐴) → (𝑥𝐴 ↔ (⌊‘𝐴) ≤ 𝐴))
6 flcl 13015 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
7 flle 13019 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
85, 6, 7elrabd 3620 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴})
98ne0d 4221 . . 3 (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅)
10 reflcl 13016 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
11 breq1 4965 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1211elrab 3618 . . . . . 6 (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ↔ (𝑧 ∈ ℤ ∧ 𝑧𝐴))
13 flge 13025 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ≤ (⌊‘𝐴)))
1413biimpd 230 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ≤ (⌊‘𝐴)))
1514expimpd 454 . . . . . 6 (𝐴 ∈ ℝ → ((𝑧 ∈ ℤ ∧ 𝑧𝐴) → 𝑧 ≤ (⌊‘𝐴)))
1612, 15syl5bi 243 . . . . 5 (𝐴 ∈ ℝ → (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} → 𝑧 ≤ (⌊‘𝐴)))
1716ralrimiv 3148 . . . 4 (𝐴 ∈ ℝ → ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴))
18 brralrspcev 5022 . . . 4 (((⌊‘𝐴) ∈ ℝ ∧ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦)
1910, 17, 18syl2anc 584 . . 3 (𝐴 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦)
204, 9, 19, 8suprubd 11451 . 2 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
21 suprleub 11455 . . . 4 ((({𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ ∧ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦) ∧ (⌊‘𝐴) ∈ ℝ) → (sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)))
224, 9, 19, 10, 21syl31anc 1366 . . 3 (𝐴 ∈ ℝ → (sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)))
2317, 22mpbird 258 . 2 (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴))
244, 9, 19suprcld 11452 . . 3 (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2510, 24letri3d 10629 . 2 (𝐴 ∈ ℝ → ((⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ↔ ((⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ∧ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴))))
2620, 23, 25mpbir2and 709 1 (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1522   ∈ wcel 2081   ≠ wne 2984  ∀wral 3105  ∃wrex 3106  {crab 3109   ⊆ wss 3859  ∅c0 4211   class class class wbr 4962  ‘cfv 6225  supcsup 8750  ℝcr 10382   < clt 10521   ≤ cle 10522  ℤcz 11829  ⌊cfl 13010 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-fl 13012 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator