Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flval3 | Structured version Visualization version GIF version |
Description: An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.) |
Ref | Expression |
---|---|
flval3 | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3969 | . . . . 5 ⊢ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℤ | |
2 | zssre 12069 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
3 | 1, 2 | sstri 3886 | . . . 4 ⊢ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ) |
5 | breq1 5033 | . . . . 5 ⊢ (𝑥 = (⌊‘𝐴) → (𝑥 ≤ 𝐴 ↔ (⌊‘𝐴) ≤ 𝐴)) | |
6 | flcl 13256 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
7 | flle 13260 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
8 | 5, 6, 7 | elrabd 3590 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}) |
9 | 8 | ne0d 4224 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ≠ ∅) |
10 | reflcl 13257 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
11 | breq1 5033 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 ≤ 𝐴 ↔ 𝑧 ≤ 𝐴)) | |
12 | 11 | elrab 3588 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ↔ (𝑧 ∈ ℤ ∧ 𝑧 ≤ 𝐴)) |
13 | flge 13266 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ 𝐴 ↔ 𝑧 ≤ (⌊‘𝐴))) | |
14 | 13 | biimpd 232 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ 𝐴 → 𝑧 ≤ (⌊‘𝐴))) |
15 | 14 | expimpd 457 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℤ ∧ 𝑧 ≤ 𝐴) → 𝑧 ≤ (⌊‘𝐴))) |
16 | 12, 15 | syl5bi 245 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} → 𝑧 ≤ (⌊‘𝐴))) |
17 | 16 | ralrimiv 3095 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴)) |
18 | brralrspcev 5090 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℝ ∧ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) | |
19 | 10, 17, 18 | syl2anc 587 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) |
20 | 4, 9, 19, 8 | suprubd 11680 | . 2 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
21 | suprleub 11684 | . . . 4 ⊢ ((({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ ∧ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) ∧ (⌊‘𝐴) ∈ ℝ) → (sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴))) | |
22 | 4, 9, 19, 10, 21 | syl31anc 1374 | . . 3 ⊢ (𝐴 ∈ ℝ → (sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴))) |
23 | 17, 22 | mpbird 260 | . 2 ⊢ (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴)) |
24 | 4, 9, 19 | suprcld 11681 | . . 3 ⊢ (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ∈ ℝ) |
25 | 10, 24 | letri3d 10860 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ↔ ((⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ∧ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴)))) |
26 | 20, 23, 25 | mpbir2and 713 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∀wral 3053 ∃wrex 3054 {crab 3057 ⊆ wss 3843 ∅c0 4211 class class class wbr 5030 ‘cfv 6339 supcsup 8977 ℝcr 10614 < clt 10753 ≤ cle 10754 ℤcz 12062 ⌊cfl 13251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-sup 8979 df-inf 8980 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-n0 11977 df-z 12063 df-uz 12325 df-fl 13253 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |