Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flval3 | Structured version Visualization version GIF version |
Description: An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.) |
Ref | Expression |
---|---|
flval3 | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4013 | . . . . 5 ⊢ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℤ | |
2 | zssre 12326 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
3 | 1, 2 | sstri 3930 | . . . 4 ⊢ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ) |
5 | breq1 5077 | . . . . 5 ⊢ (𝑥 = (⌊‘𝐴) → (𝑥 ≤ 𝐴 ↔ (⌊‘𝐴) ≤ 𝐴)) | |
6 | flcl 13515 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
7 | flle 13519 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
8 | 5, 6, 7 | elrabd 3626 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}) |
9 | 8 | ne0d 4269 | . . 3 ⊢ (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ≠ ∅) |
10 | reflcl 13516 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
11 | breq1 5077 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 ≤ 𝐴 ↔ 𝑧 ≤ 𝐴)) | |
12 | 11 | elrab 3624 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ↔ (𝑧 ∈ ℤ ∧ 𝑧 ≤ 𝐴)) |
13 | flge 13525 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ 𝐴 ↔ 𝑧 ≤ (⌊‘𝐴))) | |
14 | 13 | biimpd 228 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ 𝐴 → 𝑧 ≤ (⌊‘𝐴))) |
15 | 14 | expimpd 454 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℤ ∧ 𝑧 ≤ 𝐴) → 𝑧 ≤ (⌊‘𝐴))) |
16 | 12, 15 | syl5bi 241 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} → 𝑧 ≤ (⌊‘𝐴))) |
17 | 16 | ralrimiv 3102 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴)) |
18 | brralrspcev 5134 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℝ ∧ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) | |
19 | 10, 17, 18 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) |
20 | 4, 9, 19, 8 | suprubd 11937 | . 2 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
21 | suprleub 11941 | . . . 4 ⊢ ((({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ⊆ ℝ ∧ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ 𝑦) ∧ (⌊‘𝐴) ∈ ℝ) → (sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴))) | |
22 | 4, 9, 19, 10, 21 | syl31anc 1372 | . . 3 ⊢ (𝐴 ∈ ℝ → (sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}𝑧 ≤ (⌊‘𝐴))) |
23 | 17, 22 | mpbird 256 | . 2 ⊢ (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴)) |
24 | 4, 9, 19 | suprcld 11938 | . . 3 ⊢ (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ∈ ℝ) |
25 | 10, 24 | letri3d 11117 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ↔ ((⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ∧ sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < ) ≤ (⌊‘𝐴)))) |
26 | 20, 23, 25 | mpbir2and 710 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥 ≤ 𝐴}, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 {crab 3068 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 ‘cfv 6433 supcsup 9199 ℝcr 10870 < clt 11009 ≤ cle 11010 ℤcz 12319 ⌊cfl 13510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fl 13512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |