MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgambdd Structured version   Visualization version   GIF version

Theorem lgambdd 27098
Description: The log-Gamma function is bounded on the region 𝑈. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
Assertion
Ref Expression
lgambdd (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
Distinct variable groups:   𝐺,𝑟   𝑘,𝑚,𝑟,𝑥,𝑧,𝑅   𝑈,𝑚,𝑟,𝑧   𝜑,𝑚,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgambdd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgamgulm.r . . . . 5 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
3 lgamgulm.g . . . . 5 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
41, 2, 3lgamgulm2 27097 . . . 4 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
54simprd 495 . . 3 (𝜑 → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
6 eqid 2740 . . . . 5 (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
71, 2, 3, 6lgamgulmlem6 27095 . . . 4 (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)))
87simprd 495 . . 3 (𝜑 → (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦))
95, 8mpd 15 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)
101nnrpd 13097 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
1110adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ∈ ℝ+)
1211relogcld 26683 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (log‘𝑅) ∈ ℝ)
13 pire 26518 . . . . . . 7 π ∈ ℝ
1413a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → π ∈ ℝ)
1512, 14readdcld 11319 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((log‘𝑅) + π) ∈ ℝ)
16 simpr 484 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1715, 16readdcld 11319 . . . 4 ((𝜑𝑦 ∈ ℝ) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
1817adantrr 716 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
194simpld 494 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
2019adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
2120r19.21bi 3257 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log Γ‘𝑧) ∈ ℂ)
2221abscld 15485 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ∈ ℝ)
2322adantr 480 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ∈ ℝ)
2411adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑅 ∈ ℝ+)
2524relogcld 26683 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘𝑅) ∈ ℝ)
2613a1i 11 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → π ∈ ℝ)
2725, 26readdcld 11319 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log‘𝑅) + π) ∈ ℝ)
281, 2lgamgulmlem1 27090 . . . . . . . . . . . . . . 15 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2928adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
3029sselda 4008 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3130eldifad 3988 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ∈ ℂ)
3230dmgmn0 27087 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ≠ 0)
3331, 32logcld 26630 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘𝑧) ∈ ℂ)
3421, 33addcld 11309 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log Γ‘𝑧) + (log‘𝑧)) ∈ ℂ)
3534abscld 15485 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ∈ ℝ)
3627, 35readdcld 11319 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
3736adantr 480 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
3817ad2antrr 725 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
3933abscld 15485 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ∈ ℝ)
4039, 35readdcld 11319 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
4133negcld 11634 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑧) ∈ ℂ)
4221, 41abs2difd 15506 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘-(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) − -(log‘𝑧))))
4333absnegd 15498 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘-(log‘𝑧)) = (abs‘(log‘𝑧)))
4443oveq2d 7464 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘-(log‘𝑧))) = ((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))))
4521, 33subnegd 11654 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log Γ‘𝑧) − -(log‘𝑧)) = ((log Γ‘𝑧) + (log‘𝑧)))
4645fveq2d 6924 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘((log Γ‘𝑧) − -(log‘𝑧))) = (abs‘((log Γ‘𝑧) + (log‘𝑧))))
4742, 44, 463brtr3d 5197 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) + (log‘𝑧))))
4822, 39, 35lesubadd2d 11889 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ↔ (abs‘(log Γ‘𝑧)) ≤ ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧))))))
4947, 48mpbid 232 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ≤ ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
5031, 32absrpcld 15497 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘𝑧) ∈ ℝ+)
5150relogcld 26683 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ∈ ℝ)
5251recnd 11318 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ∈ ℂ)
5352abscld 15485 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘(abs‘𝑧))) ∈ ℝ)
5453, 26readdcld 11319 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) + π) ∈ ℝ)
55 abslogle 26678 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) → (abs‘(log‘𝑧)) ≤ ((abs‘(log‘(abs‘𝑧))) + π))
5631, 32, 55syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ≤ ((abs‘(log‘(abs‘𝑧))) + π))
57 df-neg 11523 . . . . . . . . . . . . . . . 16 -(log‘𝑅) = (0 − (log‘𝑅))
58 log1 26645 . . . . . . . . . . . . . . . . 17 (log‘1) = 0
5958oveq1i 7458 . . . . . . . . . . . . . . . 16 ((log‘1) − (log‘𝑅)) = (0 − (log‘𝑅))
6057, 59eqtr4i 2771 . . . . . . . . . . . . . . 15 -(log‘𝑅) = ((log‘1) − (log‘𝑅))
61 1rp 13061 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
62 relogdiv 26653 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (log‘(1 / 𝑅)) = ((log‘1) − (log‘𝑅)))
6361, 24, 62sylancr 586 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(1 / 𝑅)) = ((log‘1) − (log‘𝑅)))
6460, 63eqtr4id 2799 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑅) = (log‘(1 / 𝑅)))
65 oveq2 7456 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 0 → (𝑧 + 𝑘) = (𝑧 + 0))
6665fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (abs‘(𝑧 + 𝑘)) = (abs‘(𝑧 + 0)))
6766breq2d 5178 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → ((1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑧 + 0))))
68 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (abs‘𝑥) = (abs‘𝑧))
6968breq1d 5176 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑧) ≤ 𝑅))
70 fvoveq1 7471 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑧 + 𝑘)))
7170breq2d 5178 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7271ralbidv 3184 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7369, 72anbi12d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))))
7473, 2elrab2 3711 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑈 ↔ (𝑧 ∈ ℂ ∧ ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))))
7574simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑈 → ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7675adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7776simprd 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))
78 0nn0 12568 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
7978a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 0 ∈ ℕ0)
8067, 77, 79rspcdva 3636 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ≤ (abs‘(𝑧 + 0)))
8131addridd 11490 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (𝑧 + 0) = 𝑧)
8281fveq2d 6924 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(𝑧 + 0)) = (abs‘𝑧))
8380, 82breqtrd 5192 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ≤ (abs‘𝑧))
8424rpreccld 13109 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ∈ ℝ+)
8584, 50logled 26687 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((1 / 𝑅) ≤ (abs‘𝑧) ↔ (log‘(1 / 𝑅)) ≤ (log‘(abs‘𝑧))))
8683, 85mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(1 / 𝑅)) ≤ (log‘(abs‘𝑧)))
8764, 86eqbrtrd 5188 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑅) ≤ (log‘(abs‘𝑧)))
8876simpld 494 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘𝑧) ≤ 𝑅)
8950, 24logled 26687 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘𝑧) ≤ 𝑅 ↔ (log‘(abs‘𝑧)) ≤ (log‘𝑅)))
9088, 89mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ≤ (log‘𝑅))
9151, 25absled 15479 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) ≤ (log‘𝑅) ↔ (-(log‘𝑅) ≤ (log‘(abs‘𝑧)) ∧ (log‘(abs‘𝑧)) ≤ (log‘𝑅))))
9287, 90, 91mpbir2and 712 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘(abs‘𝑧))) ≤ (log‘𝑅))
9353, 25, 26, 92leadd1dd 11904 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) + π) ≤ ((log‘𝑅) + π))
9439, 54, 27, 56, 93letrd 11447 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ≤ ((log‘𝑅) + π))
9539, 27, 35, 94leadd1dd 11904 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9622, 40, 36, 49, 95letrd 11447 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9796adantr 480 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9835adantr 480 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ∈ ℝ)
99 simpllr 775 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → 𝑦 ∈ ℝ)
10027adantr 480 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → ((log‘𝑅) + π) ∈ ℝ)
101 simpr 484 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)
10298, 99, 100, 101leadd2dd 11905 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ≤ (((log‘𝑅) + π) + 𝑦))
10323, 37, 38, 97, 102letrd 11447 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦))
104103ex 412 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦 → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
105104ralimdva 3173 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦 → ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
106105impr 454 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦))
107 brralrspcev 5226 . . 3 (((((log‘𝑅) + π) + 𝑦) ∈ ℝ ∧ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
10818, 106, 107syl2anc 583 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
1099, 108rexlimddv 3167 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  cdif 3973  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  +crp 13057  seqcseq 14052  cexp 14112  abscabs 15283  πcpi 16114  𝑢culm 26437  logclog 26614  log Γclgam 27077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-ulm 26438  df-log 26616  df-cxp 26617  df-lgam 27080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator