MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgambdd Structured version   Visualization version   GIF version

Theorem lgambdd 25616
Description: The log-Gamma function is bounded on the region 𝑈. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
Assertion
Ref Expression
lgambdd (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
Distinct variable groups:   𝐺,𝑟   𝑘,𝑚,𝑟,𝑥,𝑧,𝑅   𝑈,𝑚,𝑟,𝑧   𝜑,𝑚,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgambdd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgamgulm.r . . . . 5 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
3 lgamgulm.g . . . . 5 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
41, 2, 3lgamgulm2 25615 . . . 4 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
54simprd 498 . . 3 (𝜑 → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
6 eqid 2823 . . . . 5 (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
71, 2, 3, 6lgamgulmlem6 25613 . . . 4 (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)))
87simprd 498 . . 3 (𝜑 → (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦))
95, 8mpd 15 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)
101nnrpd 12432 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
1110adantr 483 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ∈ ℝ+)
1211relogcld 25208 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (log‘𝑅) ∈ ℝ)
13 pire 25046 . . . . . . 7 π ∈ ℝ
1413a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → π ∈ ℝ)
1512, 14readdcld 10672 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((log‘𝑅) + π) ∈ ℝ)
16 simpr 487 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1715, 16readdcld 10672 . . . 4 ((𝜑𝑦 ∈ ℝ) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
1817adantrr 715 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
194simpld 497 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
2019adantr 483 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
2120r19.21bi 3210 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log Γ‘𝑧) ∈ ℂ)
2221abscld 14798 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ∈ ℝ)
2322adantr 483 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ∈ ℝ)
2411adantr 483 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑅 ∈ ℝ+)
2524relogcld 25208 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘𝑅) ∈ ℝ)
2613a1i 11 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → π ∈ ℝ)
2725, 26readdcld 10672 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log‘𝑅) + π) ∈ ℝ)
281, 2lgamgulmlem1 25608 . . . . . . . . . . . . . . 15 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2928adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
3029sselda 3969 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3130eldifad 3950 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ∈ ℂ)
3230dmgmn0 25605 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ≠ 0)
3331, 32logcld 25156 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘𝑧) ∈ ℂ)
3421, 33addcld 10662 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log Γ‘𝑧) + (log‘𝑧)) ∈ ℂ)
3534abscld 14798 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ∈ ℝ)
3627, 35readdcld 10672 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
3736adantr 483 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
3817ad2antrr 724 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
3933abscld 14798 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ∈ ℝ)
4039, 35readdcld 10672 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
4133negcld 10986 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑧) ∈ ℂ)
4221, 41abs2difd 14819 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘-(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) − -(log‘𝑧))))
4333absnegd 14811 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘-(log‘𝑧)) = (abs‘(log‘𝑧)))
4443oveq2d 7174 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘-(log‘𝑧))) = ((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))))
4521, 33subnegd 11006 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log Γ‘𝑧) − -(log‘𝑧)) = ((log Γ‘𝑧) + (log‘𝑧)))
4645fveq2d 6676 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘((log Γ‘𝑧) − -(log‘𝑧))) = (abs‘((log Γ‘𝑧) + (log‘𝑧))))
4742, 44, 463brtr3d 5099 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) + (log‘𝑧))))
4822, 39, 35lesubadd2d 11241 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ↔ (abs‘(log Γ‘𝑧)) ≤ ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧))))))
4947, 48mpbid 234 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ≤ ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
5031, 32absrpcld 14810 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘𝑧) ∈ ℝ+)
5150relogcld 25208 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ∈ ℝ)
5251recnd 10671 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ∈ ℂ)
5352abscld 14798 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘(abs‘𝑧))) ∈ ℝ)
5453, 26readdcld 10672 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) + π) ∈ ℝ)
55 abslogle 25203 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) → (abs‘(log‘𝑧)) ≤ ((abs‘(log‘(abs‘𝑧))) + π))
5631, 32, 55syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ≤ ((abs‘(log‘(abs‘𝑧))) + π))
57 1rp 12396 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
58 relogdiv 25178 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (log‘(1 / 𝑅)) = ((log‘1) − (log‘𝑅)))
5957, 24, 58sylancr 589 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(1 / 𝑅)) = ((log‘1) − (log‘𝑅)))
60 df-neg 10875 . . . . . . . . . . . . . . . 16 -(log‘𝑅) = (0 − (log‘𝑅))
61 log1 25171 . . . . . . . . . . . . . . . . 17 (log‘1) = 0
6261oveq1i 7168 . . . . . . . . . . . . . . . 16 ((log‘1) − (log‘𝑅)) = (0 − (log‘𝑅))
6360, 62eqtr4i 2849 . . . . . . . . . . . . . . 15 -(log‘𝑅) = ((log‘1) − (log‘𝑅))
6459, 63syl6reqr 2877 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑅) = (log‘(1 / 𝑅)))
65 oveq2 7166 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 0 → (𝑧 + 𝑘) = (𝑧 + 0))
6665fveq2d 6676 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (abs‘(𝑧 + 𝑘)) = (abs‘(𝑧 + 0)))
6766breq2d 5080 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → ((1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑧 + 0))))
68 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (abs‘𝑥) = (abs‘𝑧))
6968breq1d 5078 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑧) ≤ 𝑅))
70 fvoveq1 7181 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑧 + 𝑘)))
7170breq2d 5080 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7271ralbidv 3199 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7369, 72anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))))
7473, 2elrab2 3685 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑈 ↔ (𝑧 ∈ ℂ ∧ ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))))
7574simprbi 499 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑈 → ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7675adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7776simprd 498 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))
78 0nn0 11915 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
7978a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 0 ∈ ℕ0)
8067, 77, 79rspcdva 3627 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ≤ (abs‘(𝑧 + 0)))
8131addid1d 10842 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (𝑧 + 0) = 𝑧)
8281fveq2d 6676 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(𝑧 + 0)) = (abs‘𝑧))
8380, 82breqtrd 5094 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ≤ (abs‘𝑧))
8424rpreccld 12444 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ∈ ℝ+)
8584, 50logled 25212 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((1 / 𝑅) ≤ (abs‘𝑧) ↔ (log‘(1 / 𝑅)) ≤ (log‘(abs‘𝑧))))
8683, 85mpbid 234 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(1 / 𝑅)) ≤ (log‘(abs‘𝑧)))
8764, 86eqbrtrd 5090 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑅) ≤ (log‘(abs‘𝑧)))
8876simpld 497 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘𝑧) ≤ 𝑅)
8950, 24logled 25212 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘𝑧) ≤ 𝑅 ↔ (log‘(abs‘𝑧)) ≤ (log‘𝑅)))
9088, 89mpbid 234 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ≤ (log‘𝑅))
9151, 25absled 14792 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) ≤ (log‘𝑅) ↔ (-(log‘𝑅) ≤ (log‘(abs‘𝑧)) ∧ (log‘(abs‘𝑧)) ≤ (log‘𝑅))))
9287, 90, 91mpbir2and 711 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘(abs‘𝑧))) ≤ (log‘𝑅))
9353, 25, 26, 92leadd1dd 11256 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) + π) ≤ ((log‘𝑅) + π))
9439, 54, 27, 56, 93letrd 10799 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ≤ ((log‘𝑅) + π))
9539, 27, 35, 94leadd1dd 11256 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9622, 40, 36, 49, 95letrd 10799 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9796adantr 483 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9835adantr 483 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ∈ ℝ)
99 simpllr 774 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → 𝑦 ∈ ℝ)
10027adantr 483 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → ((log‘𝑅) + π) ∈ ℝ)
101 simpr 487 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)
10298, 99, 100, 101leadd2dd 11257 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ≤ (((log‘𝑅) + π) + 𝑦))
10323, 37, 38, 97, 102letrd 10799 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦))
104103ex 415 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦 → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
105104ralimdva 3179 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦 → ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
106105impr 457 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦))
107 brralrspcev 5128 . . 3 (((((log‘𝑅) + π) + 𝑦) ∈ ℝ ∧ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
10818, 106, 107syl2anc 586 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
1099, 108rexlimddv 3293 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  cdif 3935  wss 3938  ifcif 4469   class class class wbr 5068  cmpt 5148  dom cdm 5557  cfv 6357  (class class class)co 7158  f cof 7409  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  +crp 12392  seqcseq 13372  cexp 13432  abscabs 14595  πcpi 15422  𝑢culm 24966  logclog 25140  log Γclgam 25595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-tan 15427  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-ulm 24967  df-log 25142  df-cxp 25143  df-lgam 25598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator