![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 01sqrexlem3 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 15298. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
01sqrexlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
01sqrexlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
Ref | Expression |
---|---|
01sqrexlem3 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 01sqrexlem1.1 | . . . 4 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
2 | ssrab2 4103 | . . . . 5 ⊢ {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} ⊆ ℝ+ | |
3 | rpssre 13064 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
4 | 2, 3 | sstri 4018 | . . . 4 ⊢ {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} ⊆ ℝ |
5 | 1, 4 | eqsstri 4043 | . . 3 ⊢ 𝑆 ⊆ ℝ |
6 | 5 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝑆 ⊆ ℝ) |
7 | 01sqrexlem1.2 | . . . 4 ⊢ 𝐵 = sup(𝑆, ℝ, < ) | |
8 | 1, 7 | 01sqrexlem2 15292 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) |
9 | 8 | ne0d 4365 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝑆 ≠ ∅) |
10 | 1re 11290 | . . 3 ⊢ 1 ∈ ℝ | |
11 | 1, 7 | 01sqrexlem1 15291 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
12 | brralrspcev 5226 | . . 3 ⊢ ((1 ∈ ℝ ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) → ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧) | |
13 | 10, 11, 12 | sylancr 586 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧) |
14 | 6, 9, 13 | 3jca 1128 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 (class class class)co 7448 supcsup 9509 ℝcr 11183 1c1 11185 < clt 11324 ≤ cle 11325 2c2 12348 ℝ+crp 13057 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 |
This theorem is referenced by: 01sqrexlem4 15294 01sqrexlem5 15295 01sqrexlem6 15296 01sqrexlem7 15297 |
Copyright terms: Public domain | W3C validator |