| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 01sqrexlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for 01sqrex 15156. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| Ref | Expression |
|---|---|
| 01sqrexlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
| 01sqrexlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
| Ref | Expression |
|---|---|
| 01sqrexlem3 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 01sqrexlem1.1 | . . . 4 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
| 2 | ssrab2 4030 | . . . . 5 ⊢ {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} ⊆ ℝ+ | |
| 3 | rpssre 12898 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
| 4 | 2, 3 | sstri 3944 | . . . 4 ⊢ {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} ⊆ ℝ |
| 5 | 1, 4 | eqsstri 3981 | . . 3 ⊢ 𝑆 ⊆ ℝ |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝑆 ⊆ ℝ) |
| 7 | 01sqrexlem1.2 | . . . 4 ⊢ 𝐵 = sup(𝑆, ℝ, < ) | |
| 8 | 1, 7 | 01sqrexlem2 15150 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) |
| 9 | 8 | ne0d 4292 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝑆 ≠ ∅) |
| 10 | 1re 11112 | . . 3 ⊢ 1 ∈ ℝ | |
| 11 | 1, 7 | 01sqrexlem1 15149 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
| 12 | brralrspcev 5151 | . . 3 ⊢ ((1 ∈ ℝ ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) → ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧) | |
| 13 | 10, 11, 12 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧) |
| 14 | 6, 9, 13 | 3jca 1128 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 ⊆ wss 3902 ∅c0 4283 class class class wbr 5091 (class class class)co 7346 supcsup 9324 ℝcr 11005 1c1 11007 < clt 11146 ≤ cle 11147 2c2 12180 ℝ+crp 12890 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: 01sqrexlem4 15152 01sqrexlem5 15153 01sqrexlem6 15154 01sqrexlem7 15155 |
| Copyright terms: Public domain | W3C validator |