![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsequb | Structured version Visualization version GIF version |
Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fsequb | ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 13938 | . . 3 ⊢ (𝑀...𝑁) ∈ Fin | |
2 | fimaxre3 12159 | . . 3 ⊢ (((𝑀...𝑁) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦) |
4 | r19.26 3103 | . . . . . 6 ⊢ (∀𝑘 ∈ (𝑀...𝑁)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) ↔ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦)) | |
5 | peano2re 11386 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ) | |
6 | ltp1 12053 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1)) | |
7 | 6 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → 𝑦 < (𝑦 + 1)) |
8 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → (𝐹‘𝑘) ∈ ℝ) | |
9 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → 𝑦 ∈ ℝ) | |
10 | 5 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → (𝑦 + 1) ∈ ℝ) |
11 | lelttr 11303 | . . . . . . . . . . 11 ⊢ (((𝐹‘𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝐹‘𝑘) ≤ 𝑦 ∧ 𝑦 < (𝑦 + 1)) → (𝐹‘𝑘) < (𝑦 + 1))) | |
12 | 8, 9, 10, 11 | syl3anc 1368 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → (((𝐹‘𝑘) ≤ 𝑦 ∧ 𝑦 < (𝑦 + 1)) → (𝐹‘𝑘) < (𝑦 + 1))) |
13 | 7, 12 | mpan2d 691 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → ((𝐹‘𝑘) ≤ 𝑦 → (𝐹‘𝑘) < (𝑦 + 1))) |
14 | 13 | expimpd 453 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) → (𝐹‘𝑘) < (𝑦 + 1))) |
15 | 14 | ralimdv 3161 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < (𝑦 + 1))) |
16 | brralrspcev 5199 | . . . . . . 7 ⊢ (((𝑦 + 1) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < (𝑦 + 1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) | |
17 | 5, 15, 16 | syl6an 681 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
18 | 4, 17 | biimtrrid 242 | . . . . 5 ⊢ (𝑦 ∈ ℝ → ((∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
19 | 18 | expd 415 | . . . 4 ⊢ (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥))) |
20 | 19 | impcom 407 | . . 3 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
21 | 20 | rexlimdva 3147 | . 2 ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
22 | 3, 21 | mpd 15 | 1 ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 class class class wbr 5139 ‘cfv 6534 (class class class)co 7402 Fincfn 8936 ℝcr 11106 1c1 11108 + caddc 11110 < clt 11247 ≤ cle 11248 ...cfz 13485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13486 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |