MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsequb Structured version   Visualization version   GIF version

Theorem fsequb 13940
Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fsequb (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥

Proof of Theorem fsequb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzfi 13937 . . 3 (𝑀...𝑁) ∈ Fin
2 fimaxre3 12129 . . 3 (((𝑀...𝑁) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦)
31, 2mpan 690 . 2 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦)
4 r19.26 3091 . . . . . 6 (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) ↔ (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦))
5 peano2re 11347 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
6 ltp1 12022 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
76adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → 𝑦 < (𝑦 + 1))
8 simpr 484 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (𝐹𝑘) ∈ ℝ)
9 simpl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → 𝑦 ∈ ℝ)
105adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
11 lelttr 11264 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝐹𝑘) ≤ 𝑦𝑦 < (𝑦 + 1)) → (𝐹𝑘) < (𝑦 + 1)))
128, 9, 10, 11syl3anc 1373 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (((𝐹𝑘) ≤ 𝑦𝑦 < (𝑦 + 1)) → (𝐹𝑘) < (𝑦 + 1)))
137, 12mpan2d 694 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → ((𝐹𝑘) ≤ 𝑦 → (𝐹𝑘) < (𝑦 + 1)))
1413expimpd 453 . . . . . . . 8 (𝑦 ∈ ℝ → (((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → (𝐹𝑘) < (𝑦 + 1)))
1514ralimdv 3147 . . . . . . 7 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < (𝑦 + 1)))
16 brralrspcev 5167 . . . . . . 7 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < (𝑦 + 1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
175, 15, 16syl6an 684 . . . . . 6 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
184, 17biimtrrid 243 . . . . 5 (𝑦 ∈ ℝ → ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
1918expd 415 . . . 4 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)))
2019impcom 407 . . 3 ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
2120rexlimdva 3134 . 2 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
223, 21mpd 15 1 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Fincfn 8918  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator