| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsequb | Structured version Visualization version GIF version | ||
| Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fsequb | ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi 13944 | . . 3 ⊢ (𝑀...𝑁) ∈ Fin | |
| 2 | fimaxre3 12136 | . . 3 ⊢ (((𝑀...𝑁) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦) |
| 4 | r19.26 3092 | . . . . . 6 ⊢ (∀𝑘 ∈ (𝑀...𝑁)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) ↔ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦)) | |
| 5 | peano2re 11354 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ) | |
| 6 | ltp1 12029 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1)) | |
| 7 | 6 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → 𝑦 < (𝑦 + 1)) |
| 8 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → (𝐹‘𝑘) ∈ ℝ) | |
| 9 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → 𝑦 ∈ ℝ) | |
| 10 | 5 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → (𝑦 + 1) ∈ ℝ) |
| 11 | lelttr 11271 | . . . . . . . . . . 11 ⊢ (((𝐹‘𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝐹‘𝑘) ≤ 𝑦 ∧ 𝑦 < (𝑦 + 1)) → (𝐹‘𝑘) < (𝑦 + 1))) | |
| 12 | 8, 9, 10, 11 | syl3anc 1373 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → (((𝐹‘𝑘) ≤ 𝑦 ∧ 𝑦 < (𝑦 + 1)) → (𝐹‘𝑘) < (𝑦 + 1))) |
| 13 | 7, 12 | mpan2d 694 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → ((𝐹‘𝑘) ≤ 𝑦 → (𝐹‘𝑘) < (𝑦 + 1))) |
| 14 | 13 | expimpd 453 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) → (𝐹‘𝑘) < (𝑦 + 1))) |
| 15 | 14 | ralimdv 3148 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < (𝑦 + 1))) |
| 16 | brralrspcev 5170 | . . . . . . 7 ⊢ (((𝑦 + 1) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < (𝑦 + 1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) | |
| 17 | 5, 15, 16 | syl6an 684 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
| 18 | 4, 17 | biimtrrid 243 | . . . . 5 ⊢ (𝑦 ∈ ℝ → ((∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
| 19 | 18 | expd 415 | . . . 4 ⊢ (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥))) |
| 20 | 19 | impcom 407 | . . 3 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
| 21 | 20 | rexlimdva 3135 | . 2 ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
| 22 | 3, 21 | mpd 15 | 1 ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ℝcr 11074 1c1 11076 + caddc 11078 < clt 11215 ≤ cle 11216 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |