MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsequb Structured version   Visualization version   GIF version

Theorem fsequb 13973
Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fsequb (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥

Proof of Theorem fsequb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzfi 13970 . . 3 (𝑀...𝑁) ∈ Fin
2 fimaxre3 12191 . . 3 (((𝑀...𝑁) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦)
31, 2mpan 689 . 2 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦)
4 r19.26 3108 . . . . . 6 (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) ↔ (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦))
5 peano2re 11418 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
6 ltp1 12085 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
76adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → 𝑦 < (𝑦 + 1))
8 simpr 484 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (𝐹𝑘) ∈ ℝ)
9 simpl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → 𝑦 ∈ ℝ)
105adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
11 lelttr 11335 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝐹𝑘) ≤ 𝑦𝑦 < (𝑦 + 1)) → (𝐹𝑘) < (𝑦 + 1)))
128, 9, 10, 11syl3anc 1369 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (((𝐹𝑘) ≤ 𝑦𝑦 < (𝑦 + 1)) → (𝐹𝑘) < (𝑦 + 1)))
137, 12mpan2d 693 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → ((𝐹𝑘) ≤ 𝑦 → (𝐹𝑘) < (𝑦 + 1)))
1413expimpd 453 . . . . . . . 8 (𝑦 ∈ ℝ → (((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → (𝐹𝑘) < (𝑦 + 1)))
1514ralimdv 3166 . . . . . . 7 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < (𝑦 + 1)))
16 brralrspcev 5208 . . . . . . 7 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < (𝑦 + 1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
175, 15, 16syl6an 683 . . . . . 6 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
184, 17biimtrrid 242 . . . . 5 (𝑦 ∈ ℝ → ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
1918expd 415 . . . 4 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)))
2019impcom 407 . . 3 ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
2120rexlimdva 3152 . 2 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
223, 21mpd 15 1 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  wral 3058  wrex 3067   class class class wbr 5148  cfv 6548  (class class class)co 7420  Fincfn 8964  cr 11138  1c1 11140   + caddc 11142   < clt 11279  cle 11280  ...cfz 13517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator