MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsequb Structured version   Visualization version   GIF version

Theorem fsequb 14012
Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fsequb (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥

Proof of Theorem fsequb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzfi 14009 . . 3 (𝑀...𝑁) ∈ Fin
2 fimaxre3 12211 . . 3 (((𝑀...𝑁) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦)
31, 2mpan 690 . 2 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦)
4 r19.26 3108 . . . . . 6 (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) ↔ (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦))
5 peano2re 11431 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
6 ltp1 12104 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
76adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → 𝑦 < (𝑦 + 1))
8 simpr 484 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (𝐹𝑘) ∈ ℝ)
9 simpl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → 𝑦 ∈ ℝ)
105adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
11 lelttr 11348 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝐹𝑘) ≤ 𝑦𝑦 < (𝑦 + 1)) → (𝐹𝑘) < (𝑦 + 1)))
128, 9, 10, 11syl3anc 1370 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (((𝐹𝑘) ≤ 𝑦𝑦 < (𝑦 + 1)) → (𝐹𝑘) < (𝑦 + 1)))
137, 12mpan2d 694 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → ((𝐹𝑘) ≤ 𝑦 → (𝐹𝑘) < (𝑦 + 1)))
1413expimpd 453 . . . . . . . 8 (𝑦 ∈ ℝ → (((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → (𝐹𝑘) < (𝑦 + 1)))
1514ralimdv 3166 . . . . . . 7 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < (𝑦 + 1)))
16 brralrspcev 5207 . . . . . . 7 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < (𝑦 + 1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
175, 15, 16syl6an 684 . . . . . 6 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
184, 17biimtrrid 243 . . . . 5 (𝑦 ∈ ℝ → ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
1918expd 415 . . . 4 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)))
2019impcom 407 . . 3 ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
2120rexlimdva 3152 . 2 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
223, 21mpd 15 1 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wral 3058  wrex 3067   class class class wbr 5147  cfv 6562  (class class class)co 7430  Fincfn 8983  cr 11151  1c1 11153   + caddc 11155   < clt 11292  cle 11293  ...cfz 13543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator