MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsequb Structured version   Visualization version   GIF version

Theorem fsequb 13577
Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fsequb (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥

Proof of Theorem fsequb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzfi 13574 . . 3 (𝑀...𝑁) ∈ Fin
2 fimaxre3 11805 . . 3 (((𝑀...𝑁) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦)
31, 2mpan 690 . 2 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦)
4 r19.26 3094 . . . . . 6 (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) ↔ (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦))
5 peano2re 11032 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
6 ltp1 11699 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
76adantr 484 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → 𝑦 < (𝑦 + 1))
8 simpr 488 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (𝐹𝑘) ∈ ℝ)
9 simpl 486 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → 𝑦 ∈ ℝ)
105adantr 484 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
11 lelttr 10950 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝐹𝑘) ≤ 𝑦𝑦 < (𝑦 + 1)) → (𝐹𝑘) < (𝑦 + 1)))
128, 9, 10, 11syl3anc 1373 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (((𝐹𝑘) ≤ 𝑦𝑦 < (𝑦 + 1)) → (𝐹𝑘) < (𝑦 + 1)))
137, 12mpan2d 694 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → ((𝐹𝑘) ≤ 𝑦 → (𝐹𝑘) < (𝑦 + 1)))
1413expimpd 457 . . . . . . . 8 (𝑦 ∈ ℝ → (((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → (𝐹𝑘) < (𝑦 + 1)))
1514ralimdv 3103 . . . . . . 7 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < (𝑦 + 1)))
16 brralrspcev 5129 . . . . . . 7 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < (𝑦 + 1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
175, 15, 16syl6an 684 . . . . . 6 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
184, 17syl5bir 246 . . . . 5 (𝑦 ∈ ℝ → ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
1918expd 419 . . . 4 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)))
2019impcom 411 . . 3 ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
2120rexlimdva 3212 . 2 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
223, 21mpd 15 1 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  wral 3063  wrex 3064   class class class wbr 5069  cfv 6400  (class class class)co 7234  Fincfn 8649  cr 10755  1c1 10757   + caddc 10759   < clt 10894  cle 10895  ...cfz 13122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10812  ax-resscn 10813  ax-1cn 10814  ax-icn 10815  ax-addcl 10816  ax-addrcl 10817  ax-mulcl 10818  ax-mulrcl 10819  ax-mulcom 10820  ax-addass 10821  ax-mulass 10822  ax-distr 10823  ax-i2m1 10824  ax-1ne0 10825  ax-1rid 10826  ax-rnegex 10827  ax-rrecex 10828  ax-cnre 10829  ax-pre-lttri 10830  ax-pre-lttrn 10831  ax-pre-ltadd 10832  ax-pre-mulgt0 10833
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3711  df-csb 3828  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-pnf 10896  df-mnf 10897  df-xr 10898  df-ltxr 10899  df-le 10900  df-sub 11091  df-neg 11092  df-nn 11858  df-n0 12118  df-z 12204  df-uz 12466  df-fz 13123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator