MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsequb Structured version   Visualization version   GIF version

Theorem fsequb 14026
Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fsequb (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥

Proof of Theorem fsequb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzfi 14023 . . 3 (𝑀...𝑁) ∈ Fin
2 fimaxre3 12241 . . 3 (((𝑀...𝑁) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦)
31, 2mpan 689 . 2 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦)
4 r19.26 3117 . . . . . 6 (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) ↔ (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦))
5 peano2re 11463 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
6 ltp1 12134 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
76adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → 𝑦 < (𝑦 + 1))
8 simpr 484 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (𝐹𝑘) ∈ ℝ)
9 simpl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → 𝑦 ∈ ℝ)
105adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
11 lelttr 11380 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝐹𝑘) ≤ 𝑦𝑦 < (𝑦 + 1)) → (𝐹𝑘) < (𝑦 + 1)))
128, 9, 10, 11syl3anc 1371 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → (((𝐹𝑘) ≤ 𝑦𝑦 < (𝑦 + 1)) → (𝐹𝑘) < (𝑦 + 1)))
137, 12mpan2d 693 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → ((𝐹𝑘) ≤ 𝑦 → (𝐹𝑘) < (𝑦 + 1)))
1413expimpd 453 . . . . . . . 8 (𝑦 ∈ ℝ → (((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → (𝐹𝑘) < (𝑦 + 1)))
1514ralimdv 3175 . . . . . . 7 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < (𝑦 + 1)))
16 brralrspcev 5226 . . . . . . 7 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < (𝑦 + 1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
175, 15, 16syl6an 683 . . . . . 6 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
184, 17biimtrrid 243 . . . . 5 (𝑦 ∈ ℝ → ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
1918expd 415 . . . 4 (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)))
2019impcom 407 . . 3 ((∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
2120rexlimdva 3161 . 2 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → (∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥))
223, 21mpd 15 1 (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cle 11325  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator