MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphassir Structured version   Visualization version   GIF version

Theorem cphassir 23522
Description: "Associative" law for the second argument of an inner product with scalar 𝑖. (Contributed by AV, 17-Oct-2021.)
Hypotheses
Ref Expression
cphassi.x 𝑋 = (Base‘𝑊)
cphassi.s · = ( ·𝑠𝑊)
cphassi.i , = (·𝑖𝑊)
cphassi.f 𝐹 = (Scalar‘𝑊)
cphassi.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphassir (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵)))

Proof of Theorem cphassir
StepHypRef Expression
1 simp1l 1177 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
2 simp1r 1178 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ 𝐾)
3 simp2 1117 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
4 simp3 1118 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
5 cphassi.i . . . 4 , = (·𝑖𝑊)
6 cphassi.x . . . 4 𝑋 = (Base‘𝑊)
7 cphassi.f . . . 4 𝐹 = (Scalar‘𝑊)
8 cphassi.k . . . 4 𝐾 = (Base‘𝐹)
9 cphassi.s . . . 4 · = ( ·𝑠𝑊)
105, 6, 7, 8, 9cphassr 23519 . . 3 ((𝑊 ∈ ℂPreHil ∧ (i ∈ 𝐾𝐴𝑋𝐵𝑋)) → (𝐴 , (i · 𝐵)) = ((∗‘i) · (𝐴 , 𝐵)))
111, 2, 3, 4, 10syl13anc 1352 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) = ((∗‘i) · (𝐴 , 𝐵)))
12 cji 14379 . . 3 (∗‘i) = -i
1312oveq1i 6986 . 2 ((∗‘i) · (𝐴 , 𝐵)) = (-i · (𝐴 , 𝐵))
1411, 13syl6eq 2831 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  cfv 6188  (class class class)co 6976  ici 10337   · cmul 10340  -cneg 10671  ccj 14316  Basecbs 16339  Scalarcsca 16424   ·𝑠 cvsca 16425  ·𝑖cip 16426  ℂPreHilccph 23473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-tpos 7695  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-fz 12709  df-seq 13185  df-exp 13245  df-cj 14319  df-re 14320  df-im 14321  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-starv 16436  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-0g 16571  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-mhm 17803  df-grp 17894  df-subg 18060  df-ghm 18127  df-cmn 18668  df-mgp 18963  df-ur 18975  df-ring 19022  df-cring 19023  df-oppr 19096  df-dvdsr 19114  df-unit 19115  df-rnghom 19190  df-drng 19227  df-subrg 19256  df-staf 19338  df-srng 19339  df-lmod 19358  df-lmhm 19516  df-lvec 19597  df-sra 19666  df-rgmod 19667  df-cnfld 20248  df-phl 20472  df-nlm 22899  df-clm 23370  df-cph 23475
This theorem is referenced by:  cphipval2  23547
  Copyright terms: Public domain W3C validator