| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphassir | Structured version Visualization version GIF version | ||
| Description: "Associative" law for the second argument of an inner product with scalar _𝑖. (Contributed by AV, 17-Oct-2021.) |
| Ref | Expression |
|---|---|
| cphassi.x | ⊢ 𝑋 = (Base‘𝑊) |
| cphassi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| cphassi.i | ⊢ , = (·𝑖‘𝑊) |
| cphassi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cphassi.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cphassir | ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑊 ∈ ℂPreHil) | |
| 2 | simp1r 1199 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → i ∈ 𝐾) | |
| 3 | simp2 1137 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 4 | simp3 1138 | . . 3 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
| 5 | cphassi.i | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 6 | cphassi.x | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
| 7 | cphassi.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | cphassi.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 9 | cphassi.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | cphassr 25119 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (i ∈ 𝐾 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 , (i · 𝐵)) = ((∗‘i) · (𝐴 , 𝐵))) |
| 11 | 1, 2, 3, 4, 10 | syl13anc 1374 | . 2 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , (i · 𝐵)) = ((∗‘i) · (𝐴 , 𝐵))) |
| 12 | cji 15135 | . . 3 ⊢ (∗‘i) = -i | |
| 13 | 12 | oveq1i 7404 | . 2 ⊢ ((∗‘i) · (𝐴 , 𝐵)) = (-i · (𝐴 , 𝐵)) |
| 14 | 11, 13 | eqtrdi 2781 | 1 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6519 (class class class)co 7394 ici 11088 · cmul 11091 -cneg 11424 ∗ccj 15072 Basecbs 17185 Scalarcsca 17229 ·𝑠 cvsca 17230 ·𝑖cip 17231 ℂPreHilccph 25073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-addf 11165 ax-mulf 11166 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-minusg 18875 df-subg 19061 df-ghm 19151 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-rhm 20387 df-subrg 20485 df-drng 20646 df-staf 20754 df-srng 20755 df-lmod 20774 df-lmhm 20935 df-lvec 21016 df-sra 21086 df-rgmod 21087 df-cnfld 21271 df-phl 21541 df-nlm 24480 df-clm 24969 df-cph 25075 |
| This theorem is referenced by: cphipval2 25148 |
| Copyright terms: Public domain | W3C validator |