MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphassir Structured version   Visualization version   GIF version

Theorem cphassir 23970
Description: "Associative" law for the second argument of an inner product with scalar 𝑖. (Contributed by AV, 17-Oct-2021.)
Hypotheses
Ref Expression
cphassi.x 𝑋 = (Base‘𝑊)
cphassi.s · = ( ·𝑠𝑊)
cphassi.i , = (·𝑖𝑊)
cphassi.f 𝐹 = (Scalar‘𝑊)
cphassi.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphassir (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵)))

Proof of Theorem cphassir
StepHypRef Expression
1 simp1l 1198 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
2 simp1r 1199 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ 𝐾)
3 simp2 1138 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
4 simp3 1139 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
5 cphassi.i . . . 4 , = (·𝑖𝑊)
6 cphassi.x . . . 4 𝑋 = (Base‘𝑊)
7 cphassi.f . . . 4 𝐹 = (Scalar‘𝑊)
8 cphassi.k . . . 4 𝐾 = (Base‘𝐹)
9 cphassi.s . . . 4 · = ( ·𝑠𝑊)
105, 6, 7, 8, 9cphassr 23967 . . 3 ((𝑊 ∈ ℂPreHil ∧ (i ∈ 𝐾𝐴𝑋𝐵𝑋)) → (𝐴 , (i · 𝐵)) = ((∗‘i) · (𝐴 , 𝐵)))
111, 2, 3, 4, 10syl13anc 1373 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) = ((∗‘i) · (𝐴 , 𝐵)))
12 cji 14611 . . 3 (∗‘i) = -i
1312oveq1i 7183 . 2 ((∗‘i) · (𝐴 , 𝐵)) = (-i · (𝐴 , 𝐵))
1411, 13eqtrdi 2790 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  cfv 6340  (class class class)co 7173  ici 10620   · cmul 10623  -cneg 10952  ccj 14548  Basecbs 16589  Scalarcsca 16674   ·𝑠 cvsca 16675  ·𝑖cip 16676  ℂPreHilccph 23921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-addf 10697  ax-mulf 10698
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-tpos 7924  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-er 8323  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-z 12066  df-dec 12183  df-uz 12328  df-fz 12985  df-seq 13464  df-exp 13525  df-cj 14551  df-re 14552  df-im 14553  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-mulr 16685  df-starv 16686  df-sca 16687  df-vsca 16688  df-ip 16689  df-tset 16690  df-ple 16691  df-ds 16693  df-unif 16694  df-0g 16821  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-mhm 18075  df-grp 18225  df-subg 18397  df-ghm 18477  df-cmn 19029  df-mgp 19362  df-ur 19374  df-ring 19421  df-cring 19422  df-oppr 19498  df-dvdsr 19516  df-unit 19517  df-rnghom 19592  df-drng 19626  df-subrg 19655  df-staf 19738  df-srng 19739  df-lmod 19758  df-lmhm 19916  df-lvec 19997  df-sra 20066  df-rgmod 20067  df-cnfld 20221  df-phl 20445  df-nlm 23342  df-clm 23818  df-cph 23923
This theorem is referenced by:  cphipval2  23996
  Copyright terms: Public domain W3C validator