| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imneg | Structured version Visualization version GIF version | ||
| Description: The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| imneg | ⊢ (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl 15017 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 2 | 1 | recnd 11140 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
| 3 | ax-icn 11065 | . . . . . 6 ⊢ i ∈ ℂ | |
| 4 | imcl 15018 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
| 5 | 4 | recnd 11140 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
| 6 | mulcl 11090 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
| 7 | 3, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
| 8 | 2, 7 | negdid 11485 | . . . 4 ⊢ (𝐴 ∈ ℂ → -((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = (-(ℜ‘𝐴) + -(i · (ℑ‘𝐴)))) |
| 9 | replim 15023 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
| 10 | 9 | negeqd 11354 | . . . 4 ⊢ (𝐴 ∈ ℂ → -𝐴 = -((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
| 11 | mulneg2 11554 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) | |
| 12 | 3, 5, 11 | sylancr 587 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) |
| 13 | 12 | oveq2d 7362 | . . . 4 ⊢ (𝐴 ∈ ℂ → (-(ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = (-(ℜ‘𝐴) + -(i · (ℑ‘𝐴)))) |
| 14 | 8, 10, 13 | 3eqtr4d 2776 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 = (-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) |
| 15 | 14 | fveq2d 6826 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘-𝐴) = (ℑ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴))))) |
| 16 | 1 | renegcld 11544 | . . 3 ⊢ (𝐴 ∈ ℂ → -(ℜ‘𝐴) ∈ ℝ) |
| 17 | 4 | renegcld 11544 | . . 3 ⊢ (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ) |
| 18 | crim 15022 | . . 3 ⊢ ((-(ℜ‘𝐴) ∈ ℝ ∧ -(ℑ‘𝐴) ∈ ℝ) → (ℑ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℑ‘𝐴)) | |
| 19 | 16, 17, 18 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℑ‘𝐴)) |
| 20 | 15, 19 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 ici 11008 + caddc 11009 · cmul 11011 -cneg 11345 ℜcre 15004 ℑcim 15005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-cj 15006 df-re 15007 df-im 15008 |
| This theorem is referenced by: imsub 15042 cjneg 15054 imnegi 15088 imnegd 15117 logreclem 26699 asinlem3 26808 |
| Copyright terms: Public domain | W3C validator |