MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfss Structured version   Visualization version   GIF version

Theorem cncfss 24770
Description: The set of continuous functions is expanded when the codomain is expanded. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
cncfss ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))

Proof of Theorem cncfss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cncff 24764 . . . . . 6 (𝑓 ∈ (𝐴cn𝐵) → 𝑓:𝐴𝐵)
21adantl 481 . . . . 5 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓:𝐴𝐵)
3 simpll 764 . . . . 5 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝐵𝐶)
42, 3fssd 6728 . . . 4 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓:𝐴𝐶)
5 cncfcdm 24769 . . . . 5 ((𝐶 ⊆ ℂ ∧ 𝑓 ∈ (𝐴cn𝐵)) → (𝑓 ∈ (𝐴cn𝐶) ↔ 𝑓:𝐴𝐶))
65adantll 711 . . . 4 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → (𝑓 ∈ (𝐴cn𝐶) ↔ 𝑓:𝐴𝐶))
74, 6mpbird 257 . . 3 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓 ∈ (𝐴cn𝐶))
87ex 412 . 2 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) → 𝑓 ∈ (𝐴cn𝐶)))
98ssrdv 3983 1 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2098  wss 3943  wf 6532  (class class class)co 7404  cc 11107  cnccncf 24747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-2 12276  df-cj 15050  df-re 15051  df-im 15052  df-abs 15187  df-cncf 24749
This theorem is referenced by:  cncfcompt2  24779  cncfmptid  24784  cncfmpt2ss  24787  evthicc2  25340  volivth  25487  iblabslem  25708  iblabs  25709  bddmulibl  25719  cnlimci  25769  rolle  25873  c1liplem1  25880  dvivth  25894  dvcnvrelem2  25902  itgsubst  25935  logcn  26532  logccv  26548  fdvposlt  34140  fdvneggt  34141  fdvposle  34142  fdvnegge  34143  logdivsqrle  34191  knoppcnlem10  35886  ftc1cnnclem  37070  ftc2nc  37081  areacirclem2  37088  evthiccabs  44762  cncfcompt  45152  cncficcgt0  45157  cncfiooicc  45163  cncfiooiccre  45164  itgsubsticclem  45244  fourierdlem72  45447  fourierdlem78  45453  fourierdlem83  45458  fourierdlem84  45459  fourierdlem85  45460  fourierdlem88  45463  fourierdlem95  45470  fourierdlem111  45486
  Copyright terms: Public domain W3C validator