| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfss | Structured version Visualization version GIF version | ||
| Description: The set of continuous functions is expanded when the codomain is expanded. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncfss | ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncff 24919 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴–cn→𝐵) → 𝑓:𝐴⟶𝐵) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝑓:𝐴⟶𝐵) |
| 3 | simpll 767 | . . . . 5 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | fssd 6753 | . . . 4 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝑓:𝐴⟶𝐶) |
| 5 | cncfcdm 24924 | . . . . 5 ⊢ ((𝐶 ⊆ ℂ ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → (𝑓 ∈ (𝐴–cn→𝐶) ↔ 𝑓:𝐴⟶𝐶)) | |
| 6 | 5 | adantll 714 | . . . 4 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → (𝑓 ∈ (𝐴–cn→𝐶) ↔ 𝑓:𝐴⟶𝐶)) |
| 7 | 4, 6 | mpbird 257 | . . 3 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝑓 ∈ (𝐴–cn→𝐶)) |
| 8 | 7 | ex 412 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝑓 ∈ (𝐴–cn→𝐵) → 𝑓 ∈ (𝐴–cn→𝐶))) |
| 9 | 8 | ssrdv 3989 | 1 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3951 ⟶wf 6557 (class class class)co 7431 ℂcc 11153 –cn→ccncf 24902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-2 12329 df-cj 15138 df-re 15139 df-im 15140 df-abs 15275 df-cncf 24904 |
| This theorem is referenced by: cncfcompt2 24934 cncfmptid 24939 cncfmpt2ss 24942 evthicc2 25495 volivth 25642 iblabslem 25863 iblabs 25864 bddmulibl 25874 cnlimci 25924 rolle 26028 c1liplem1 26035 dvivth 26049 dvcnvrelem2 26057 itgsubst 26090 logcn 26689 logccv 26705 fdvposlt 34614 fdvneggt 34615 fdvposle 34616 fdvnegge 34617 logdivsqrle 34665 knoppcnlem10 36503 ftc1cnnclem 37698 ftc2nc 37709 areacirclem2 37716 evthiccabs 45509 cncfcompt 45898 cncficcgt0 45903 cncfiooicc 45909 cncfiooiccre 45910 itgsubsticclem 45990 fourierdlem72 46193 fourierdlem78 46199 fourierdlem83 46204 fourierdlem84 46205 fourierdlem85 46206 fourierdlem88 46209 fourierdlem95 46216 fourierdlem111 46232 |
| Copyright terms: Public domain | W3C validator |