MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfss Structured version   Visualization version   GIF version

Theorem cncfss 24817
Description: The set of continuous functions is expanded when the codomain is expanded. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
cncfss ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))

Proof of Theorem cncfss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cncff 24811 . . . . . 6 (𝑓 ∈ (𝐴cn𝐵) → 𝑓:𝐴𝐵)
21adantl 481 . . . . 5 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓:𝐴𝐵)
3 simpll 766 . . . . 5 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝐵𝐶)
42, 3fssd 6668 . . . 4 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓:𝐴𝐶)
5 cncfcdm 24816 . . . . 5 ((𝐶 ⊆ ℂ ∧ 𝑓 ∈ (𝐴cn𝐵)) → (𝑓 ∈ (𝐴cn𝐶) ↔ 𝑓:𝐴𝐶))
65adantll 714 . . . 4 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → (𝑓 ∈ (𝐴cn𝐶) ↔ 𝑓:𝐴𝐶))
74, 6mpbird 257 . . 3 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓 ∈ (𝐴cn𝐶))
87ex 412 . 2 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) → 𝑓 ∈ (𝐴cn𝐶)))
98ssrdv 3940 1 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wss 3902  wf 6477  (class class class)co 7346  cc 11001  cnccncf 24794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-cj 15003  df-re 15004  df-im 15005  df-abs 15140  df-cncf 24796
This theorem is referenced by:  cncfcompt2  24826  cncfmptid  24831  cncfmpt2ss  24834  evthicc2  25386  volivth  25533  iblabslem  25754  iblabs  25755  bddmulibl  25765  cnlimci  25815  rolle  25919  c1liplem1  25926  dvivth  25940  dvcnvrelem2  25948  itgsubst  25981  logcn  26581  logccv  26597  fdvposlt  34607  fdvneggt  34608  fdvposle  34609  fdvnegge  34610  logdivsqrle  34658  knoppcnlem10  36535  ftc1cnnclem  37730  ftc2nc  37741  areacirclem2  37748  evthiccabs  45535  cncfcompt  45920  cncficcgt0  45925  cncfiooicc  45931  cncfiooiccre  45932  itgsubsticclem  46012  fourierdlem72  46215  fourierdlem78  46221  fourierdlem83  46226  fourierdlem84  46227  fourierdlem85  46228  fourierdlem88  46231  fourierdlem95  46238  fourierdlem111  46254
  Copyright terms: Public domain W3C validator