MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfss Structured version   Visualization version   GIF version

Theorem cncfss 23422
Description: The set of continuous functions is expanded when the range is expanded. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
cncfss ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))

Proof of Theorem cncfss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cncff 23416 . . . . . 6 (𝑓 ∈ (𝐴cn𝐵) → 𝑓:𝐴𝐵)
21adantl 482 . . . . 5 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓:𝐴𝐵)
3 simpll 763 . . . . 5 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝐵𝐶)
42, 3fssd 6524 . . . 4 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓:𝐴𝐶)
5 cncffvrn 23421 . . . . 5 ((𝐶 ⊆ ℂ ∧ 𝑓 ∈ (𝐴cn𝐵)) → (𝑓 ∈ (𝐴cn𝐶) ↔ 𝑓:𝐴𝐶))
65adantll 710 . . . 4 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → (𝑓 ∈ (𝐴cn𝐶) ↔ 𝑓:𝐴𝐶))
74, 6mpbird 258 . . 3 (((𝐵𝐶𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴cn𝐵)) → 𝑓 ∈ (𝐴cn𝐶))
87ex 413 . 2 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) → 𝑓 ∈ (𝐴cn𝐶)))
98ssrdv 3976 1 ((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2107  wss 3939  wf 6347  (class class class)co 7151  cc 10527  cnccncf 23399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-2 11692  df-cj 14451  df-re 14452  df-im 14453  df-abs 14588  df-cncf 23401
This theorem is referenced by:  cncfmptid  23435  cncfmpt2ss  23438  evthicc2  23976  volivth  24123  iblabslem  24343  iblabs  24344  bddmulibl  24354  cnlimci  24402  rolle  24502  c1liplem1  24508  dvivth  24522  dvcnvrelem2  24530  itgsubst  24561  logcn  25143  logccv  25159  fdvposlt  31756  fdvneggt  31757  fdvposle  31758  fdvnegge  31759  logdivsqrle  31807  knoppcnlem10  33725  ftc1cnnclem  34832  ftc2nc  34843  areacirclem2  34850  evthiccabs  41632  cncfcompt  42027  cncficcgt0  42032  cncfiooicc  42038  cncfiooiccre  42039  cncfcompt2  42043  itgsubsticclem  42121  fourierdlem72  42325  fourierdlem78  42331  fourierdlem83  42336  fourierdlem84  42337  fourierdlem85  42338  fourierdlem88  42341  fourierdlem95  42348  fourierdlem111  42364
  Copyright terms: Public domain W3C validator