![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfss | Structured version Visualization version GIF version |
Description: The set of continuous functions is expanded when the codomain is expanded. (Contributed by Mario Carneiro, 30-Aug-2014.) |
Ref | Expression |
---|---|
cncfss | ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncff 24932 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴–cn→𝐵) → 𝑓:𝐴⟶𝐵) | |
2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝑓:𝐴⟶𝐵) |
3 | simpll 767 | . . . . 5 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | fssd 6753 | . . . 4 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝑓:𝐴⟶𝐶) |
5 | cncfcdm 24937 | . . . . 5 ⊢ ((𝐶 ⊆ ℂ ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → (𝑓 ∈ (𝐴–cn→𝐶) ↔ 𝑓:𝐴⟶𝐶)) | |
6 | 5 | adantll 714 | . . . 4 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → (𝑓 ∈ (𝐴–cn→𝐶) ↔ 𝑓:𝐴⟶𝐶)) |
7 | 4, 6 | mpbird 257 | . . 3 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝑓 ∈ (𝐴–cn→𝐶)) |
8 | 7 | ex 412 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝑓 ∈ (𝐴–cn→𝐵) → 𝑓 ∈ (𝐴–cn→𝐶))) |
9 | 8 | ssrdv 4000 | 1 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ⊆ wss 3962 ⟶wf 6558 (class class class)co 7430 ℂcc 11150 –cn→ccncf 24915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-2 12326 df-cj 15134 df-re 15135 df-im 15136 df-abs 15271 df-cncf 24917 |
This theorem is referenced by: cncfcompt2 24947 cncfmptid 24952 cncfmpt2ss 24955 evthicc2 25508 volivth 25655 iblabslem 25877 iblabs 25878 bddmulibl 25888 cnlimci 25938 rolle 26042 c1liplem1 26049 dvivth 26063 dvcnvrelem2 26071 itgsubst 26104 logcn 26703 logccv 26719 fdvposlt 34592 fdvneggt 34593 fdvposle 34594 fdvnegge 34595 logdivsqrle 34643 knoppcnlem10 36484 ftc1cnnclem 37677 ftc2nc 37688 areacirclem2 37695 evthiccabs 45448 cncfcompt 45838 cncficcgt0 45843 cncfiooicc 45849 cncfiooiccre 45850 itgsubsticclem 45930 fourierdlem72 46133 fourierdlem78 46139 fourierdlem83 46144 fourierdlem84 46145 fourierdlem85 46146 fourierdlem88 46149 fourierdlem95 46156 fourierdlem111 46172 |
Copyright terms: Public domain | W3C validator |