Proof of Theorem constrrecl
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ ℝ) → 𝑋 ∈ ℝ) |
| 2 | 1 | rered 15246 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ℝ) → (ℜ‘𝑋) = 𝑋) |
| 3 | | constrcjcl.1 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ Constr) |
| 4 | 3 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ℝ) → 𝑋 ∈ Constr) |
| 5 | 2, 4 | eqeltrd 2833 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ ℝ) → (ℜ‘𝑋) ∈
Constr) |
| 6 | | 0zd 12608 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℤ) |
| 7 | 6 | zconstr 33749 |
. . . 4
⊢ (𝜑 → 0 ∈
Constr) |
| 8 | 7 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → 0 ∈
Constr) |
| 9 | | 1zzd 12631 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
| 10 | 9 | zconstr 33749 |
. . . 4
⊢ (𝜑 → 1 ∈
Constr) |
| 11 | 10 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → 1 ∈
Constr) |
| 12 | 3 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → 𝑋 ∈ Constr) |
| 13 | 3 | constrcjcl 33753 |
. . . 4
⊢ (𝜑 → (∗‘𝑋) ∈
Constr) |
| 14 | 13 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) →
(∗‘𝑋) ∈
Constr) |
| 15 | 3 | constrcn 33745 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 16 | 15 | recld 15216 |
. . . 4
⊢ (𝜑 → (ℜ‘𝑋) ∈
ℝ) |
| 17 | 16 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (ℜ‘𝑋) ∈
ℝ) |
| 18 | | halfre 12462 |
. . . 4
⊢ (1 / 2)
∈ ℝ |
| 19 | 18 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (1 / 2) ∈
ℝ) |
| 20 | 16 | recnd 11271 |
. . . 4
⊢ (𝜑 → (ℜ‘𝑋) ∈
ℂ) |
| 21 | 20 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (ℜ‘𝑋) ∈
ℂ) |
| 22 | | 1cnd 11238 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) |
| 23 | 22 | subid1d 11591 |
. . . . . . . 8
⊢ (𝜑 → (1 − 0) =
1) |
| 24 | 23, 22 | eqeltrd 2833 |
. . . . . . 7
⊢ (𝜑 → (1 − 0) ∈
ℂ) |
| 25 | 20, 24 | mulcld 11263 |
. . . . . 6
⊢ (𝜑 → ((ℜ‘𝑋) · (1 − 0)) ∈
ℂ) |
| 26 | 25 | addlidd 11444 |
. . . . 5
⊢ (𝜑 → (0 + ((ℜ‘𝑋) · (1 − 0))) =
((ℜ‘𝑋) ·
(1 − 0))) |
| 27 | 23 | oveq2d 7429 |
. . . . 5
⊢ (𝜑 → ((ℜ‘𝑋) · (1 − 0)) =
((ℜ‘𝑋) ·
1)) |
| 28 | 20 | mulridd 11260 |
. . . . 5
⊢ (𝜑 → ((ℜ‘𝑋) · 1) =
(ℜ‘𝑋)) |
| 29 | 26, 27, 28 | 3eqtrrd 2774 |
. . . 4
⊢ (𝜑 → (ℜ‘𝑋) = (0 + ((ℜ‘𝑋) · (1 −
0)))) |
| 30 | 29 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (ℜ‘𝑋) = (0 + ((ℜ‘𝑋) · (1 −
0)))) |
| 31 | 15 | cjcld 15218 |
. . . . . . 7
⊢ (𝜑 → (∗‘𝑋) ∈
ℂ) |
| 32 | 15, 31 | addcld 11262 |
. . . . . 6
⊢ (𝜑 → (𝑋 + (∗‘𝑋)) ∈ ℂ) |
| 33 | | 2cnd 12326 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℂ) |
| 34 | | 2ne0 12352 |
. . . . . . 7
⊢ 2 ≠
0 |
| 35 | 34 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 2 ≠ 0) |
| 36 | 32, 33, 35 | divrec2d 12029 |
. . . . 5
⊢ (𝜑 → ((𝑋 + (∗‘𝑋)) / 2) = ((1 / 2) · (𝑋 + (∗‘𝑋)))) |
| 37 | | reval 15128 |
. . . . . 6
⊢ (𝑋 ∈ ℂ →
(ℜ‘𝑋) = ((𝑋 + (∗‘𝑋)) / 2)) |
| 38 | 15, 37 | syl 17 |
. . . . 5
⊢ (𝜑 → (ℜ‘𝑋) = ((𝑋 + (∗‘𝑋)) / 2)) |
| 39 | 18 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
| 40 | 39 | recnd 11271 |
. . . . . . . 8
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
| 41 | 40, 31, 15 | subdid 11701 |
. . . . . . 7
⊢ (𝜑 → ((1 / 2) ·
((∗‘𝑋) −
𝑋)) = (((1 / 2) ·
(∗‘𝑋)) −
((1 / 2) · 𝑋))) |
| 42 | 41 | oveq2d 7429 |
. . . . . 6
⊢ (𝜑 → (𝑋 + ((1 / 2) · ((∗‘𝑋) − 𝑋))) = (𝑋 + (((1 / 2) · (∗‘𝑋)) − ((1 / 2) ·
𝑋)))) |
| 43 | 40, 15 | mulcld 11263 |
. . . . . . 7
⊢ (𝜑 → ((1 / 2) · 𝑋) ∈
ℂ) |
| 44 | 40, 31 | mulcld 11263 |
. . . . . . 7
⊢ (𝜑 → ((1 / 2) ·
(∗‘𝑋)) ∈
ℂ) |
| 45 | 15, 43, 44 | subadd23d 11624 |
. . . . . 6
⊢ (𝜑 → ((𝑋 − ((1 / 2) · 𝑋)) + ((1 / 2) · (∗‘𝑋))) = (𝑋 + (((1 / 2) · (∗‘𝑋)) − ((1 / 2) ·
𝑋)))) |
| 46 | 22, 40, 15 | subdird 11702 |
. . . . . . . . 9
⊢ (𝜑 → ((1 − (1 / 2))
· 𝑋) = ((1 ·
𝑋) − ((1 / 2)
· 𝑋))) |
| 47 | | 1mhlfehlf 12468 |
. . . . . . . . . . 11
⊢ (1
− (1 / 2)) = (1 / 2) |
| 48 | 47 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (1 − (1 / 2)) = (1 /
2)) |
| 49 | 48 | oveq1d 7428 |
. . . . . . . . 9
⊢ (𝜑 → ((1 − (1 / 2))
· 𝑋) = ((1 / 2)
· 𝑋)) |
| 50 | 15 | mullidd 11261 |
. . . . . . . . . 10
⊢ (𝜑 → (1 · 𝑋) = 𝑋) |
| 51 | 50 | oveq1d 7428 |
. . . . . . . . 9
⊢ (𝜑 → ((1 · 𝑋) − ((1 / 2) ·
𝑋)) = (𝑋 − ((1 / 2) · 𝑋))) |
| 52 | 46, 49, 51 | 3eqtr3rd 2778 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 − ((1 / 2) · 𝑋)) = ((1 / 2) · 𝑋)) |
| 53 | 52 | oveq1d 7428 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 − ((1 / 2) · 𝑋)) + ((1 / 2) · (∗‘𝑋))) = (((1 / 2) · 𝑋) + ((1 / 2) ·
(∗‘𝑋)))) |
| 54 | 40, 15, 31 | adddid 11267 |
. . . . . . 7
⊢ (𝜑 → ((1 / 2) · (𝑋 + (∗‘𝑋))) = (((1 / 2) · 𝑋) + ((1 / 2) ·
(∗‘𝑋)))) |
| 55 | 53, 54 | eqtr4d 2772 |
. . . . . 6
⊢ (𝜑 → ((𝑋 − ((1 / 2) · 𝑋)) + ((1 / 2) · (∗‘𝑋))) = ((1 / 2) · (𝑋 + (∗‘𝑋)))) |
| 56 | 42, 45, 55 | 3eqtr2d 2775 |
. . . . 5
⊢ (𝜑 → (𝑋 + ((1 / 2) · ((∗‘𝑋) − 𝑋))) = ((1 / 2) · (𝑋 + (∗‘𝑋)))) |
| 57 | 36, 38, 56 | 3eqtr4d 2779 |
. . . 4
⊢ (𝜑 → (ℜ‘𝑋) = (𝑋 + ((1 / 2) · ((∗‘𝑋) − 𝑋)))) |
| 58 | 57 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (ℜ‘𝑋) = (𝑋 + ((1 / 2) · ((∗‘𝑋) − 𝑋)))) |
| 59 | 23 | fveq2d 6890 |
. . . . . . . . 9
⊢ (𝜑 → (∗‘(1 −
0)) = (∗‘1)) |
| 60 | | 1red 11244 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
| 61 | 60 | cjred 15248 |
. . . . . . . . 9
⊢ (𝜑 → (∗‘1) =
1) |
| 62 | 59, 61 | eqtrd 2769 |
. . . . . . . 8
⊢ (𝜑 → (∗‘(1 −
0)) = 1) |
| 63 | 62 | oveq1d 7428 |
. . . . . . 7
⊢ (𝜑 → ((∗‘(1
− 0)) · ((∗‘𝑋) − 𝑋)) = (1 · ((∗‘𝑋) − 𝑋))) |
| 64 | 31, 15 | subcld 11602 |
. . . . . . . 8
⊢ (𝜑 → ((∗‘𝑋) − 𝑋) ∈ ℂ) |
| 65 | 64 | mullidd 11261 |
. . . . . . 7
⊢ (𝜑 → (1 ·
((∗‘𝑋) −
𝑋)) =
((∗‘𝑋) −
𝑋)) |
| 66 | 63, 65 | eqtrd 2769 |
. . . . . 6
⊢ (𝜑 → ((∗‘(1
− 0)) · ((∗‘𝑋) − 𝑋)) = ((∗‘𝑋) − 𝑋)) |
| 67 | 66 | fveq2d 6890 |
. . . . 5
⊢ (𝜑 →
(ℑ‘((∗‘(1 − 0)) · ((∗‘𝑋) − 𝑋))) = (ℑ‘((∗‘𝑋) − 𝑋))) |
| 68 | 67 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) →
(ℑ‘((∗‘(1 − 0)) · ((∗‘𝑋) − 𝑋))) = (ℑ‘((∗‘𝑋) − 𝑋))) |
| 69 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → 𝑋 ∈ ℂ) |
| 70 | | imval2 15173 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ →
(ℑ‘𝑋) = ((𝑋 − (∗‘𝑋)) / (2 ·
i))) |
| 71 | 15, 70 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (ℑ‘𝑋) = ((𝑋 − (∗‘𝑋)) / (2 · i))) |
| 72 | 71 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (ℑ‘𝑋) = ((𝑋 − (∗‘𝑋)) / (2 · i))) |
| 73 | 15, 31 | subcld 11602 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 − (∗‘𝑋)) ∈ ℂ) |
| 74 | 73 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (𝑋 − (∗‘𝑋)) ∈ ℂ) |
| 75 | 64 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → ((∗‘𝑋) − 𝑋) ∈ ℂ) |
| 76 | 75 | imnegd 15232 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) →
(ℑ‘-((∗‘𝑋) − 𝑋)) = -(ℑ‘((∗‘𝑋) − 𝑋))) |
| 77 | 31 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (∗‘𝑋) ∈
ℂ) |
| 78 | 77, 69 | negsubdi2d 11618 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → -((∗‘𝑋) − 𝑋) = (𝑋 − (∗‘𝑋))) |
| 79 | 78 | fveq2d 6890 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) →
(ℑ‘-((∗‘𝑋) − 𝑋)) = (ℑ‘(𝑋 − (∗‘𝑋)))) |
| 80 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) →
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) |
| 81 | 80 | negeqd 11484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) →
-(ℑ‘((∗‘𝑋) − 𝑋)) = -0) |
| 82 | 76, 79, 81 | 3eqtr3d 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (ℑ‘(𝑋 − (∗‘𝑋))) = -0) |
| 83 | | neg0 11537 |
. . . . . . . . . . . . 13
⊢ -0 =
0 |
| 84 | 82, 83 | eqtrdi 2785 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (ℑ‘(𝑋 − (∗‘𝑋))) = 0) |
| 85 | 74, 84 | reim0bd 15222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (𝑋 − (∗‘𝑋)) ∈ ℝ) |
| 86 | | cjth 15125 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → ((𝑋 + (∗‘𝑋)) ∈ ℝ ∧ (i
· (𝑋 −
(∗‘𝑋))) ∈
ℝ)) |
| 87 | 15, 86 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑋 + (∗‘𝑋)) ∈ ℝ ∧ (i · (𝑋 − (∗‘𝑋))) ∈
ℝ)) |
| 88 | 87 | simprd 495 |
. . . . . . . . . . . 12
⊢ (𝜑 → (i · (𝑋 − (∗‘𝑋))) ∈
ℝ) |
| 89 | 88 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (i · (𝑋 − (∗‘𝑋))) ∈
ℝ) |
| 90 | | rimul 12239 |
. . . . . . . . . . 11
⊢ (((𝑋 − (∗‘𝑋)) ∈ ℝ ∧ (i
· (𝑋 −
(∗‘𝑋))) ∈
ℝ) → (𝑋 −
(∗‘𝑋)) =
0) |
| 91 | 85, 89, 90 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (𝑋 − (∗‘𝑋)) = 0) |
| 92 | 91 | oveq1d 7428 |
. . . . . . . . 9
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → ((𝑋 − (∗‘𝑋)) / (2 · i)) = (0 / (2 ·
i))) |
| 93 | | ax-icn 11196 |
. . . . . . . . . . . . 13
⊢ i ∈
ℂ |
| 94 | 93 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → i ∈
ℂ) |
| 95 | 33, 94 | mulcld 11263 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 · i) ∈
ℂ) |
| 96 | 95 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (2 · i) ∈
ℂ) |
| 97 | | ine0 11680 |
. . . . . . . . . . . . 13
⊢ i ≠
0 |
| 98 | 97 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → i ≠ 0) |
| 99 | 33, 94, 35, 98 | mulne0d 11897 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 · i) ≠
0) |
| 100 | 99 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (2 · i) ≠
0) |
| 101 | 96, 100 | div0d 12024 |
. . . . . . . . 9
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (0 / (2 · i)) =
0) |
| 102 | 72, 92, 101 | 3eqtrd 2773 |
. . . . . . . 8
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → (ℑ‘𝑋) = 0) |
| 103 | 69, 102 | reim0bd 15222 |
. . . . . . 7
⊢ ((𝜑 ∧
(ℑ‘((∗‘𝑋) − 𝑋)) = 0) → 𝑋 ∈ ℝ) |
| 104 | 103 | ex 412 |
. . . . . 6
⊢ (𝜑 →
((ℑ‘((∗‘𝑋) − 𝑋)) = 0 → 𝑋 ∈ ℝ)) |
| 105 | 104 | necon3bd 2945 |
. . . . 5
⊢ (𝜑 → (¬ 𝑋 ∈ ℝ →
(ℑ‘((∗‘𝑋) − 𝑋)) ≠ 0)) |
| 106 | 105 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) →
(ℑ‘((∗‘𝑋) − 𝑋)) ≠ 0) |
| 107 | 68, 106 | eqnetrd 2998 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) →
(ℑ‘((∗‘(1 − 0)) · ((∗‘𝑋) − 𝑋))) ≠ 0) |
| 108 | 8, 11, 12, 14, 17, 19, 21, 30, 58, 107 | constrllcl 33741 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ℝ) → (ℜ‘𝑋) ∈
Constr) |
| 109 | 5, 108 | pm2.61dan 812 |
1
⊢ (𝜑 → (ℜ‘𝑋) ∈
Constr) |