Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrreinvcl Structured version   Visualization version   GIF version

Theorem constrreinvcl 33722
Description: If a real number 𝑋 is constructible, then, so is its inverse. (Contributed by Thierry Arnoux, 5-Nov-2025.)
Hypotheses
Ref Expression
constrinvcl.1 (𝜑𝑋 ∈ Constr)
constrinvcl.2 (𝜑𝑋 ≠ 0)
constrreinvcl.3 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
constrreinvcl (𝜑 → (1 / 𝑋) ∈ Constr)

Proof of Theorem constrreinvcl
StepHypRef Expression
1 iconstr 33716 . . 3 i ∈ Constr
21a1i 11 . 2 (𝜑 → i ∈ Constr)
3 1cnd 11222 . . . . 5 (𝜑 → 1 ∈ ℂ)
4 constrinvcl.1 . . . . . . 7 (𝜑𝑋 ∈ Constr)
52, 4constrmulcl 33721 . . . . . 6 (𝜑 → (i · 𝑋) ∈ Constr)
65constrcn 33710 . . . . 5 (𝜑 → (i · 𝑋) ∈ ℂ)
73, 6negsubd 11592 . . . 4 (𝜑 → (1 + -(i · 𝑋)) = (1 − (i · 𝑋)))
8 1zzd 12615 . . . . . 6 (𝜑 → 1 ∈ ℤ)
98zconstr 33714 . . . . 5 (𝜑 → 1 ∈ Constr)
105constrnegcl 33713 . . . . 5 (𝜑 → -(i · 𝑋) ∈ Constr)
119, 10constraddcl 33712 . . . 4 (𝜑 → (1 + -(i · 𝑋)) ∈ Constr)
127, 11eqeltrrd 2834 . . 3 (𝜑 → (1 − (i · 𝑋)) ∈ Constr)
132, 12constraddcl 33712 . 2 (𝜑 → (i + (1 − (i · 𝑋))) ∈ Constr)
14 0zd 12592 . . 3 (𝜑 → 0 ∈ ℤ)
1514zconstr 33714 . 2 (𝜑 → 0 ∈ Constr)
16 constrreinvcl.3 . . 3 (𝜑𝑋 ∈ ℝ)
17 constrinvcl.2 . . 3 (𝜑𝑋 ≠ 0)
1816, 17rereccld 12060 . 2 (𝜑 → (1 / 𝑋) ∈ ℝ)
1918recnd 11255 . 2 (𝜑 → (1 / 𝑋) ∈ ℂ)
202constrcn 33710 . . . . . 6 (𝜑 → i ∈ ℂ)
213, 6subcld 11586 . . . . . 6 (𝜑 → (1 − (i · 𝑋)) ∈ ℂ)
2220, 21pncan2d 11588 . . . . 5 (𝜑 → ((i + (1 − (i · 𝑋))) − i) = (1 − (i · 𝑋)))
2322oveq2d 7415 . . . 4 (𝜑 → ((1 / 𝑋) · ((i + (1 − (i · 𝑋))) − i)) = ((1 / 𝑋) · (1 − (i · 𝑋))))
2423oveq2d 7415 . . 3 (𝜑 → (i + ((1 / 𝑋) · ((i + (1 − (i · 𝑋))) − i))) = (i + ((1 / 𝑋) · (1 − (i · 𝑋)))))
2519, 3, 6subdid 11685 . . . . 5 (𝜑 → ((1 / 𝑋) · (1 − (i · 𝑋))) = (((1 / 𝑋) · 1) − ((1 / 𝑋) · (i · 𝑋))))
2619mulridd 11244 . . . . . 6 (𝜑 → ((1 / 𝑋) · 1) = (1 / 𝑋))
2716recnd 11255 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
283, 27, 6, 17div32d 12032 . . . . . . 7 (𝜑 → ((1 / 𝑋) · (i · 𝑋)) = (1 · ((i · 𝑋) / 𝑋)))
296, 27, 17divcld 12009 . . . . . . . 8 (𝜑 → ((i · 𝑋) / 𝑋) ∈ ℂ)
3029mullidd 11245 . . . . . . 7 (𝜑 → (1 · ((i · 𝑋) / 𝑋)) = ((i · 𝑋) / 𝑋))
3120, 27, 17divcan4d 12015 . . . . . . 7 (𝜑 → ((i · 𝑋) / 𝑋) = i)
3228, 30, 313eqtrd 2773 . . . . . 6 (𝜑 → ((1 / 𝑋) · (i · 𝑋)) = i)
3326, 32oveq12d 7417 . . . . 5 (𝜑 → (((1 / 𝑋) · 1) − ((1 / 𝑋) · (i · 𝑋))) = ((1 / 𝑋) − i))
3425, 33eqtrd 2769 . . . 4 (𝜑 → ((1 / 𝑋) · (1 − (i · 𝑋))) = ((1 / 𝑋) − i))
3534oveq2d 7415 . . 3 (𝜑 → (i + ((1 / 𝑋) · (1 − (i · 𝑋)))) = (i + ((1 / 𝑋) − i)))
3620, 19pncan3d 11589 . . 3 (𝜑 → (i + ((1 / 𝑋) − i)) = (1 / 𝑋))
3724, 35, 363eqtrrd 2774 . 2 (𝜑 → (1 / 𝑋) = (i + ((1 / 𝑋) · ((i + (1 − (i · 𝑋))) − i))))
383subid1d 11575 . . . . . 6 (𝜑 → (1 − 0) = 1)
3938, 3eqeltrd 2833 . . . . 5 (𝜑 → (1 − 0) ∈ ℂ)
4019, 39mulcld 11247 . . . 4 (𝜑 → ((1 / 𝑋) · (1 − 0)) ∈ ℂ)
4140addlidd 11428 . . 3 (𝜑 → (0 + ((1 / 𝑋) · (1 − 0))) = ((1 / 𝑋) · (1 − 0)))
4238oveq2d 7415 . . 3 (𝜑 → ((1 / 𝑋) · (1 − 0)) = ((1 / 𝑋) · 1))
4341, 42, 263eqtrrd 2774 . 2 (𝜑 → (1 / 𝑋) = (0 + ((1 / 𝑋) · (1 − 0))))
4438oveq2d 7415 . . . . . 6 (𝜑 → ((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0)) = ((∗‘((i + (1 − (i · 𝑋))) − i)) · 1))
4513constrcn 33710 . . . . . . . . 9 (𝜑 → (i + (1 − (i · 𝑋))) ∈ ℂ)
4645, 20subcld 11586 . . . . . . . 8 (𝜑 → ((i + (1 − (i · 𝑋))) − i) ∈ ℂ)
4746cjcld 15202 . . . . . . 7 (𝜑 → (∗‘((i + (1 − (i · 𝑋))) − i)) ∈ ℂ)
4847mulridd 11244 . . . . . 6 (𝜑 → ((∗‘((i + (1 − (i · 𝑋))) − i)) · 1) = (∗‘((i + (1 − (i · 𝑋))) − i)))
4922fveq2d 6876 . . . . . 6 (𝜑 → (∗‘((i + (1 − (i · 𝑋))) − i)) = (∗‘(1 − (i · 𝑋))))
5044, 48, 493eqtrd 2773 . . . . 5 (𝜑 → ((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0)) = (∗‘(1 − (i · 𝑋))))
5150fveq2d 6876 . . . 4 (𝜑 → (ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0))) = (ℑ‘(∗‘(1 − (i · 𝑋)))))
523, 6cjsubd 32654 . . . . . 6 (𝜑 → (∗‘(1 − (i · 𝑋))) = ((∗‘1) − (∗‘(i · 𝑋))))
53 1red 11228 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
5453cjred 15232 . . . . . . 7 (𝜑 → (∗‘1) = 1)
5520, 27cjmuld 15227 . . . . . . . 8 (𝜑 → (∗‘(i · 𝑋)) = ((∗‘i) · (∗‘𝑋)))
56 cji 15165 . . . . . . . . . 10 (∗‘i) = -i
5756a1i 11 . . . . . . . . 9 (𝜑 → (∗‘i) = -i)
5816cjred 15232 . . . . . . . . 9 (𝜑 → (∗‘𝑋) = 𝑋)
5957, 58oveq12d 7417 . . . . . . . 8 (𝜑 → ((∗‘i) · (∗‘𝑋)) = (-i · 𝑋))
6020, 27mulneg1d 11682 . . . . . . . 8 (𝜑 → (-i · 𝑋) = -(i · 𝑋))
6155, 59, 603eqtrd 2773 . . . . . . 7 (𝜑 → (∗‘(i · 𝑋)) = -(i · 𝑋))
6254, 61oveq12d 7417 . . . . . 6 (𝜑 → ((∗‘1) − (∗‘(i · 𝑋))) = (1 − -(i · 𝑋)))
633, 6subnegd 11593 . . . . . 6 (𝜑 → (1 − -(i · 𝑋)) = (1 + (i · 𝑋)))
6452, 62, 633eqtrd 2773 . . . . 5 (𝜑 → (∗‘(1 − (i · 𝑋))) = (1 + (i · 𝑋)))
6564fveq2d 6876 . . . 4 (𝜑 → (ℑ‘(∗‘(1 − (i · 𝑋)))) = (ℑ‘(1 + (i · 𝑋))))
6653, 16crimd 15238 . . . 4 (𝜑 → (ℑ‘(1 + (i · 𝑋))) = 𝑋)
6751, 65, 663eqtrd 2773 . . 3 (𝜑 → (ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0))) = 𝑋)
6867, 17eqnetrd 2998 . 2 (𝜑 → (ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0))) ≠ 0)
692, 13, 15, 9, 18, 18, 19, 37, 43, 68constrllcl 33706 1 (𝜑 → (1 / 𝑋) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wne 2931  cfv 6527  (class class class)co 7399  cc 11119  cr 11120  0cc0 11121  1c1 11122  ici 11123   + caddc 11124   · cmul 11126  cmin 11458  -cneg 11459   / cdiv 11886  ccj 15102  cim 15104  Constrcconstr 33679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9448  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-seq 14009  df-exp 14069  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-constr 33680
This theorem is referenced by:  constrinvcl  33723
  Copyright terms: Public domain W3C validator