Proof of Theorem constrreinvcl
| Step | Hyp | Ref
| Expression |
| 1 | | iconstr 33716 |
. . 3
⊢ i ∈
Constr |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → i ∈
Constr) |
| 3 | | 1cnd 11222 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℂ) |
| 4 | | constrinvcl.1 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ Constr) |
| 5 | 2, 4 | constrmulcl 33721 |
. . . . . 6
⊢ (𝜑 → (i · 𝑋) ∈
Constr) |
| 6 | 5 | constrcn 33710 |
. . . . 5
⊢ (𝜑 → (i · 𝑋) ∈
ℂ) |
| 7 | 3, 6 | negsubd 11592 |
. . . 4
⊢ (𝜑 → (1 + -(i · 𝑋)) = (1 − (i ·
𝑋))) |
| 8 | | 1zzd 12615 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
| 9 | 8 | zconstr 33714 |
. . . . 5
⊢ (𝜑 → 1 ∈
Constr) |
| 10 | 5 | constrnegcl 33713 |
. . . . 5
⊢ (𝜑 → -(i · 𝑋) ∈
Constr) |
| 11 | 9, 10 | constraddcl 33712 |
. . . 4
⊢ (𝜑 → (1 + -(i · 𝑋)) ∈
Constr) |
| 12 | 7, 11 | eqeltrrd 2834 |
. . 3
⊢ (𝜑 → (1 − (i ·
𝑋)) ∈
Constr) |
| 13 | 2, 12 | constraddcl 33712 |
. 2
⊢ (𝜑 → (i + (1 − (i
· 𝑋))) ∈
Constr) |
| 14 | | 0zd 12592 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
| 15 | 14 | zconstr 33714 |
. 2
⊢ (𝜑 → 0 ∈
Constr) |
| 16 | | constrreinvcl.3 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 17 | | constrinvcl.2 |
. . 3
⊢ (𝜑 → 𝑋 ≠ 0) |
| 18 | 16, 17 | rereccld 12060 |
. 2
⊢ (𝜑 → (1 / 𝑋) ∈ ℝ) |
| 19 | 18 | recnd 11255 |
. 2
⊢ (𝜑 → (1 / 𝑋) ∈ ℂ) |
| 20 | 2 | constrcn 33710 |
. . . . . 6
⊢ (𝜑 → i ∈
ℂ) |
| 21 | 3, 6 | subcld 11586 |
. . . . . 6
⊢ (𝜑 → (1 − (i ·
𝑋)) ∈
ℂ) |
| 22 | 20, 21 | pncan2d 11588 |
. . . . 5
⊢ (𝜑 → ((i + (1 − (i
· 𝑋))) − i) =
(1 − (i · 𝑋))) |
| 23 | 22 | oveq2d 7415 |
. . . 4
⊢ (𝜑 → ((1 / 𝑋) · ((i + (1 − (i ·
𝑋))) − i)) = ((1 /
𝑋) · (1 − (i
· 𝑋)))) |
| 24 | 23 | oveq2d 7415 |
. . 3
⊢ (𝜑 → (i + ((1 / 𝑋) · ((i + (1 − (i
· 𝑋))) − i)))
= (i + ((1 / 𝑋) · (1
− (i · 𝑋))))) |
| 25 | 19, 3, 6 | subdid 11685 |
. . . . 5
⊢ (𝜑 → ((1 / 𝑋) · (1 − (i · 𝑋))) = (((1 / 𝑋) · 1) − ((1 / 𝑋) · (i · 𝑋)))) |
| 26 | 19 | mulridd 11244 |
. . . . . 6
⊢ (𝜑 → ((1 / 𝑋) · 1) = (1 / 𝑋)) |
| 27 | 16 | recnd 11255 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 28 | 3, 27, 6, 17 | div32d 12032 |
. . . . . . 7
⊢ (𝜑 → ((1 / 𝑋) · (i · 𝑋)) = (1 · ((i · 𝑋) / 𝑋))) |
| 29 | 6, 27, 17 | divcld 12009 |
. . . . . . . 8
⊢ (𝜑 → ((i · 𝑋) / 𝑋) ∈ ℂ) |
| 30 | 29 | mullidd 11245 |
. . . . . . 7
⊢ (𝜑 → (1 · ((i ·
𝑋) / 𝑋)) = ((i · 𝑋) / 𝑋)) |
| 31 | 20, 27, 17 | divcan4d 12015 |
. . . . . . 7
⊢ (𝜑 → ((i · 𝑋) / 𝑋) = i) |
| 32 | 28, 30, 31 | 3eqtrd 2773 |
. . . . . 6
⊢ (𝜑 → ((1 / 𝑋) · (i · 𝑋)) = i) |
| 33 | 26, 32 | oveq12d 7417 |
. . . . 5
⊢ (𝜑 → (((1 / 𝑋) · 1) − ((1 / 𝑋) · (i · 𝑋))) = ((1 / 𝑋) − i)) |
| 34 | 25, 33 | eqtrd 2769 |
. . . 4
⊢ (𝜑 → ((1 / 𝑋) · (1 − (i · 𝑋))) = ((1 / 𝑋) − i)) |
| 35 | 34 | oveq2d 7415 |
. . 3
⊢ (𝜑 → (i + ((1 / 𝑋) · (1 − (i
· 𝑋)))) = (i + ((1 /
𝑋) −
i))) |
| 36 | 20, 19 | pncan3d 11589 |
. . 3
⊢ (𝜑 → (i + ((1 / 𝑋) − i)) = (1 / 𝑋)) |
| 37 | 24, 35, 36 | 3eqtrrd 2774 |
. 2
⊢ (𝜑 → (1 / 𝑋) = (i + ((1 / 𝑋) · ((i + (1 − (i ·
𝑋))) −
i)))) |
| 38 | 3 | subid1d 11575 |
. . . . . 6
⊢ (𝜑 → (1 − 0) =
1) |
| 39 | 38, 3 | eqeltrd 2833 |
. . . . 5
⊢ (𝜑 → (1 − 0) ∈
ℂ) |
| 40 | 19, 39 | mulcld 11247 |
. . . 4
⊢ (𝜑 → ((1 / 𝑋) · (1 − 0)) ∈
ℂ) |
| 41 | 40 | addlidd 11428 |
. . 3
⊢ (𝜑 → (0 + ((1 / 𝑋) · (1 − 0))) = ((1
/ 𝑋) · (1 −
0))) |
| 42 | 38 | oveq2d 7415 |
. . 3
⊢ (𝜑 → ((1 / 𝑋) · (1 − 0)) = ((1 / 𝑋) · 1)) |
| 43 | 41, 42, 26 | 3eqtrrd 2774 |
. 2
⊢ (𝜑 → (1 / 𝑋) = (0 + ((1 / 𝑋) · (1 − 0)))) |
| 44 | 38 | oveq2d 7415 |
. . . . . 6
⊢ (𝜑 → ((∗‘((i + (1
− (i · 𝑋)))
− i)) · (1 − 0)) = ((∗‘((i + (1 − (i
· 𝑋))) − i))
· 1)) |
| 45 | 13 | constrcn 33710 |
. . . . . . . . 9
⊢ (𝜑 → (i + (1 − (i
· 𝑋))) ∈
ℂ) |
| 46 | 45, 20 | subcld 11586 |
. . . . . . . 8
⊢ (𝜑 → ((i + (1 − (i
· 𝑋))) − i)
∈ ℂ) |
| 47 | 46 | cjcld 15202 |
. . . . . . 7
⊢ (𝜑 → (∗‘((i + (1
− (i · 𝑋)))
− i)) ∈ ℂ) |
| 48 | 47 | mulridd 11244 |
. . . . . 6
⊢ (𝜑 → ((∗‘((i + (1
− (i · 𝑋)))
− i)) · 1) = (∗‘((i + (1 − (i · 𝑋))) −
i))) |
| 49 | 22 | fveq2d 6876 |
. . . . . 6
⊢ (𝜑 → (∗‘((i + (1
− (i · 𝑋)))
− i)) = (∗‘(1 − (i · 𝑋)))) |
| 50 | 44, 48, 49 | 3eqtrd 2773 |
. . . . 5
⊢ (𝜑 → ((∗‘((i + (1
− (i · 𝑋)))
− i)) · (1 − 0)) = (∗‘(1 − (i ·
𝑋)))) |
| 51 | 50 | fveq2d 6876 |
. . . 4
⊢ (𝜑 →
(ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0))) =
(ℑ‘(∗‘(1 − (i · 𝑋))))) |
| 52 | 3, 6 | cjsubd 32654 |
. . . . . 6
⊢ (𝜑 → (∗‘(1 −
(i · 𝑋))) =
((∗‘1) − (∗‘(i · 𝑋)))) |
| 53 | | 1red 11228 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
| 54 | 53 | cjred 15232 |
. . . . . . 7
⊢ (𝜑 → (∗‘1) =
1) |
| 55 | 20, 27 | cjmuld 15227 |
. . . . . . . 8
⊢ (𝜑 → (∗‘(i
· 𝑋)) =
((∗‘i) · (∗‘𝑋))) |
| 56 | | cji 15165 |
. . . . . . . . . 10
⊢
(∗‘i) = -i |
| 57 | 56 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (∗‘i) =
-i) |
| 58 | 16 | cjred 15232 |
. . . . . . . . 9
⊢ (𝜑 → (∗‘𝑋) = 𝑋) |
| 59 | 57, 58 | oveq12d 7417 |
. . . . . . . 8
⊢ (𝜑 → ((∗‘i)
· (∗‘𝑋)) = (-i · 𝑋)) |
| 60 | 20, 27 | mulneg1d 11682 |
. . . . . . . 8
⊢ (𝜑 → (-i · 𝑋) = -(i · 𝑋)) |
| 61 | 55, 59, 60 | 3eqtrd 2773 |
. . . . . . 7
⊢ (𝜑 → (∗‘(i
· 𝑋)) = -(i ·
𝑋)) |
| 62 | 54, 61 | oveq12d 7417 |
. . . . . 6
⊢ (𝜑 → ((∗‘1)
− (∗‘(i · 𝑋))) = (1 − -(i · 𝑋))) |
| 63 | 3, 6 | subnegd 11593 |
. . . . . 6
⊢ (𝜑 → (1 − -(i ·
𝑋)) = (1 + (i ·
𝑋))) |
| 64 | 52, 62, 63 | 3eqtrd 2773 |
. . . . 5
⊢ (𝜑 → (∗‘(1 −
(i · 𝑋))) = (1 + (i
· 𝑋))) |
| 65 | 64 | fveq2d 6876 |
. . . 4
⊢ (𝜑 →
(ℑ‘(∗‘(1 − (i · 𝑋)))) = (ℑ‘(1 + (i · 𝑋)))) |
| 66 | 53, 16 | crimd 15238 |
. . . 4
⊢ (𝜑 → (ℑ‘(1 + (i
· 𝑋))) = 𝑋) |
| 67 | 51, 65, 66 | 3eqtrd 2773 |
. . 3
⊢ (𝜑 →
(ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0))) =
𝑋) |
| 68 | 67, 17 | eqnetrd 2998 |
. 2
⊢ (𝜑 →
(ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0)))
≠ 0) |
| 69 | 2, 13, 15, 9, 18, 18, 19, 37, 43, 68 | constrllcl 33706 |
1
⊢ (𝜑 → (1 / 𝑋) ∈ Constr) |