Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrreinvcl Structured version   Visualization version   GIF version

Theorem constrreinvcl 33758
Description: If a real number 𝑋 is constructible, then, so is its inverse. (Contributed by Thierry Arnoux, 5-Nov-2025.)
Hypotheses
Ref Expression
constrinvcl.1 (𝜑𝑋 ∈ Constr)
constrinvcl.2 (𝜑𝑋 ≠ 0)
constrreinvcl.3 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
constrreinvcl (𝜑 → (1 / 𝑋) ∈ Constr)

Proof of Theorem constrreinvcl
StepHypRef Expression
1 iconstr 33752 . . 3 i ∈ Constr
21a1i 11 . 2 (𝜑 → i ∈ Constr)
3 1cnd 11129 . . . . 5 (𝜑 → 1 ∈ ℂ)
4 constrinvcl.1 . . . . . . 7 (𝜑𝑋 ∈ Constr)
52, 4constrmulcl 33757 . . . . . 6 (𝜑 → (i · 𝑋) ∈ Constr)
65constrcn 33746 . . . . 5 (𝜑 → (i · 𝑋) ∈ ℂ)
73, 6negsubd 11500 . . . 4 (𝜑 → (1 + -(i · 𝑋)) = (1 − (i · 𝑋)))
8 1zzd 12525 . . . . . 6 (𝜑 → 1 ∈ ℤ)
98zconstr 33750 . . . . 5 (𝜑 → 1 ∈ Constr)
105constrnegcl 33749 . . . . 5 (𝜑 → -(i · 𝑋) ∈ Constr)
119, 10constraddcl 33748 . . . 4 (𝜑 → (1 + -(i · 𝑋)) ∈ Constr)
127, 11eqeltrrd 2829 . . 3 (𝜑 → (1 − (i · 𝑋)) ∈ Constr)
132, 12constraddcl 33748 . 2 (𝜑 → (i + (1 − (i · 𝑋))) ∈ Constr)
14 0zd 12502 . . 3 (𝜑 → 0 ∈ ℤ)
1514zconstr 33750 . 2 (𝜑 → 0 ∈ Constr)
16 constrreinvcl.3 . . 3 (𝜑𝑋 ∈ ℝ)
17 constrinvcl.2 . . 3 (𝜑𝑋 ≠ 0)
1816, 17rereccld 11970 . 2 (𝜑 → (1 / 𝑋) ∈ ℝ)
1918recnd 11162 . 2 (𝜑 → (1 / 𝑋) ∈ ℂ)
202constrcn 33746 . . . . . 6 (𝜑 → i ∈ ℂ)
213, 6subcld 11494 . . . . . 6 (𝜑 → (1 − (i · 𝑋)) ∈ ℂ)
2220, 21pncan2d 11496 . . . . 5 (𝜑 → ((i + (1 − (i · 𝑋))) − i) = (1 − (i · 𝑋)))
2322oveq2d 7369 . . . 4 (𝜑 → ((1 / 𝑋) · ((i + (1 − (i · 𝑋))) − i)) = ((1 / 𝑋) · (1 − (i · 𝑋))))
2423oveq2d 7369 . . 3 (𝜑 → (i + ((1 / 𝑋) · ((i + (1 − (i · 𝑋))) − i))) = (i + ((1 / 𝑋) · (1 − (i · 𝑋)))))
2519, 3, 6subdid 11595 . . . . 5 (𝜑 → ((1 / 𝑋) · (1 − (i · 𝑋))) = (((1 / 𝑋) · 1) − ((1 / 𝑋) · (i · 𝑋))))
2619mulridd 11151 . . . . . 6 (𝜑 → ((1 / 𝑋) · 1) = (1 / 𝑋))
2716recnd 11162 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
283, 27, 6, 17div32d 11942 . . . . . . 7 (𝜑 → ((1 / 𝑋) · (i · 𝑋)) = (1 · ((i · 𝑋) / 𝑋)))
296, 27, 17divcld 11919 . . . . . . . 8 (𝜑 → ((i · 𝑋) / 𝑋) ∈ ℂ)
3029mullidd 11152 . . . . . . 7 (𝜑 → (1 · ((i · 𝑋) / 𝑋)) = ((i · 𝑋) / 𝑋))
3120, 27, 17divcan4d 11925 . . . . . . 7 (𝜑 → ((i · 𝑋) / 𝑋) = i)
3228, 30, 313eqtrd 2768 . . . . . 6 (𝜑 → ((1 / 𝑋) · (i · 𝑋)) = i)
3326, 32oveq12d 7371 . . . . 5 (𝜑 → (((1 / 𝑋) · 1) − ((1 / 𝑋) · (i · 𝑋))) = ((1 / 𝑋) − i))
3425, 33eqtrd 2764 . . . 4 (𝜑 → ((1 / 𝑋) · (1 − (i · 𝑋))) = ((1 / 𝑋) − i))
3534oveq2d 7369 . . 3 (𝜑 → (i + ((1 / 𝑋) · (1 − (i · 𝑋)))) = (i + ((1 / 𝑋) − i)))
3620, 19pncan3d 11497 . . 3 (𝜑 → (i + ((1 / 𝑋) − i)) = (1 / 𝑋))
3724, 35, 363eqtrrd 2769 . 2 (𝜑 → (1 / 𝑋) = (i + ((1 / 𝑋) · ((i + (1 − (i · 𝑋))) − i))))
383subid1d 11483 . . . . . 6 (𝜑 → (1 − 0) = 1)
3938, 3eqeltrd 2828 . . . . 5 (𝜑 → (1 − 0) ∈ ℂ)
4019, 39mulcld 11154 . . . 4 (𝜑 → ((1 / 𝑋) · (1 − 0)) ∈ ℂ)
4140addlidd 11336 . . 3 (𝜑 → (0 + ((1 / 𝑋) · (1 − 0))) = ((1 / 𝑋) · (1 − 0)))
4238oveq2d 7369 . . 3 (𝜑 → ((1 / 𝑋) · (1 − 0)) = ((1 / 𝑋) · 1))
4341, 42, 263eqtrrd 2769 . 2 (𝜑 → (1 / 𝑋) = (0 + ((1 / 𝑋) · (1 − 0))))
4438oveq2d 7369 . . . . . 6 (𝜑 → ((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0)) = ((∗‘((i + (1 − (i · 𝑋))) − i)) · 1))
4513constrcn 33746 . . . . . . . . 9 (𝜑 → (i + (1 − (i · 𝑋))) ∈ ℂ)
4645, 20subcld 11494 . . . . . . . 8 (𝜑 → ((i + (1 − (i · 𝑋))) − i) ∈ ℂ)
4746cjcld 15122 . . . . . . 7 (𝜑 → (∗‘((i + (1 − (i · 𝑋))) − i)) ∈ ℂ)
4847mulridd 11151 . . . . . 6 (𝜑 → ((∗‘((i + (1 − (i · 𝑋))) − i)) · 1) = (∗‘((i + (1 − (i · 𝑋))) − i)))
4922fveq2d 6830 . . . . . 6 (𝜑 → (∗‘((i + (1 − (i · 𝑋))) − i)) = (∗‘(1 − (i · 𝑋))))
5044, 48, 493eqtrd 2768 . . . . 5 (𝜑 → ((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0)) = (∗‘(1 − (i · 𝑋))))
5150fveq2d 6830 . . . 4 (𝜑 → (ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0))) = (ℑ‘(∗‘(1 − (i · 𝑋)))))
523, 6cjsubd 32705 . . . . . 6 (𝜑 → (∗‘(1 − (i · 𝑋))) = ((∗‘1) − (∗‘(i · 𝑋))))
53 1red 11135 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
5453cjred 15152 . . . . . . 7 (𝜑 → (∗‘1) = 1)
5520, 27cjmuld 15147 . . . . . . . 8 (𝜑 → (∗‘(i · 𝑋)) = ((∗‘i) · (∗‘𝑋)))
56 cji 15085 . . . . . . . . . 10 (∗‘i) = -i
5756a1i 11 . . . . . . . . 9 (𝜑 → (∗‘i) = -i)
5816cjred 15152 . . . . . . . . 9 (𝜑 → (∗‘𝑋) = 𝑋)
5957, 58oveq12d 7371 . . . . . . . 8 (𝜑 → ((∗‘i) · (∗‘𝑋)) = (-i · 𝑋))
6020, 27mulneg1d 11592 . . . . . . . 8 (𝜑 → (-i · 𝑋) = -(i · 𝑋))
6155, 59, 603eqtrd 2768 . . . . . . 7 (𝜑 → (∗‘(i · 𝑋)) = -(i · 𝑋))
6254, 61oveq12d 7371 . . . . . 6 (𝜑 → ((∗‘1) − (∗‘(i · 𝑋))) = (1 − -(i · 𝑋)))
633, 6subnegd 11501 . . . . . 6 (𝜑 → (1 − -(i · 𝑋)) = (1 + (i · 𝑋)))
6452, 62, 633eqtrd 2768 . . . . 5 (𝜑 → (∗‘(1 − (i · 𝑋))) = (1 + (i · 𝑋)))
6564fveq2d 6830 . . . 4 (𝜑 → (ℑ‘(∗‘(1 − (i · 𝑋)))) = (ℑ‘(1 + (i · 𝑋))))
6653, 16crimd 15158 . . . 4 (𝜑 → (ℑ‘(1 + (i · 𝑋))) = 𝑋)
6751, 65, 663eqtrd 2768 . . 3 (𝜑 → (ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0))) = 𝑋)
6867, 17eqnetrd 2992 . 2 (𝜑 → (ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0))) ≠ 0)
692, 13, 15, 9, 18, 18, 19, 37, 43, 68constrllcl 33742 1 (𝜑 → (1 / 𝑋) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029  ici 11030   + caddc 11031   · cmul 11033  cmin 11366  -cneg 11367   / cdiv 11796  ccj 15022  cim 15024  Constrcconstr 33715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-constr 33716
This theorem is referenced by:  constrinvcl  33759
  Copyright terms: Public domain W3C validator