Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrreinvcl Structured version   Visualization version   GIF version

Theorem constrreinvcl 33777
Description: If a real number 𝑋 is constructible, then, so is its inverse. (Contributed by Thierry Arnoux, 5-Nov-2025.)
Hypotheses
Ref Expression
constrinvcl.1 (𝜑𝑋 ∈ Constr)
constrinvcl.2 (𝜑𝑋 ≠ 0)
constrreinvcl.3 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
constrreinvcl (𝜑 → (1 / 𝑋) ∈ Constr)

Proof of Theorem constrreinvcl
StepHypRef Expression
1 iconstr 33771 . . 3 i ∈ Constr
21a1i 11 . 2 (𝜑 → i ∈ Constr)
3 1cnd 11102 . . . . 5 (𝜑 → 1 ∈ ℂ)
4 constrinvcl.1 . . . . . . 7 (𝜑𝑋 ∈ Constr)
52, 4constrmulcl 33776 . . . . . 6 (𝜑 → (i · 𝑋) ∈ Constr)
65constrcn 33765 . . . . 5 (𝜑 → (i · 𝑋) ∈ ℂ)
73, 6negsubd 11473 . . . 4 (𝜑 → (1 + -(i · 𝑋)) = (1 − (i · 𝑋)))
8 1zzd 12498 . . . . . 6 (𝜑 → 1 ∈ ℤ)
98zconstr 33769 . . . . 5 (𝜑 → 1 ∈ Constr)
105constrnegcl 33768 . . . . 5 (𝜑 → -(i · 𝑋) ∈ Constr)
119, 10constraddcl 33767 . . . 4 (𝜑 → (1 + -(i · 𝑋)) ∈ Constr)
127, 11eqeltrrd 2832 . . 3 (𝜑 → (1 − (i · 𝑋)) ∈ Constr)
132, 12constraddcl 33767 . 2 (𝜑 → (i + (1 − (i · 𝑋))) ∈ Constr)
14 0zd 12475 . . 3 (𝜑 → 0 ∈ ℤ)
1514zconstr 33769 . 2 (𝜑 → 0 ∈ Constr)
16 constrreinvcl.3 . . 3 (𝜑𝑋 ∈ ℝ)
17 constrinvcl.2 . . 3 (𝜑𝑋 ≠ 0)
1816, 17rereccld 11943 . 2 (𝜑 → (1 / 𝑋) ∈ ℝ)
1918recnd 11135 . 2 (𝜑 → (1 / 𝑋) ∈ ℂ)
202constrcn 33765 . . . . . 6 (𝜑 → i ∈ ℂ)
213, 6subcld 11467 . . . . . 6 (𝜑 → (1 − (i · 𝑋)) ∈ ℂ)
2220, 21pncan2d 11469 . . . . 5 (𝜑 → ((i + (1 − (i · 𝑋))) − i) = (1 − (i · 𝑋)))
2322oveq2d 7357 . . . 4 (𝜑 → ((1 / 𝑋) · ((i + (1 − (i · 𝑋))) − i)) = ((1 / 𝑋) · (1 − (i · 𝑋))))
2423oveq2d 7357 . . 3 (𝜑 → (i + ((1 / 𝑋) · ((i + (1 − (i · 𝑋))) − i))) = (i + ((1 / 𝑋) · (1 − (i · 𝑋)))))
2519, 3, 6subdid 11568 . . . . 5 (𝜑 → ((1 / 𝑋) · (1 − (i · 𝑋))) = (((1 / 𝑋) · 1) − ((1 / 𝑋) · (i · 𝑋))))
2619mulridd 11124 . . . . . 6 (𝜑 → ((1 / 𝑋) · 1) = (1 / 𝑋))
2716recnd 11135 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
283, 27, 6, 17div32d 11915 . . . . . . 7 (𝜑 → ((1 / 𝑋) · (i · 𝑋)) = (1 · ((i · 𝑋) / 𝑋)))
296, 27, 17divcld 11892 . . . . . . . 8 (𝜑 → ((i · 𝑋) / 𝑋) ∈ ℂ)
3029mullidd 11125 . . . . . . 7 (𝜑 → (1 · ((i · 𝑋) / 𝑋)) = ((i · 𝑋) / 𝑋))
3120, 27, 17divcan4d 11898 . . . . . . 7 (𝜑 → ((i · 𝑋) / 𝑋) = i)
3228, 30, 313eqtrd 2770 . . . . . 6 (𝜑 → ((1 / 𝑋) · (i · 𝑋)) = i)
3326, 32oveq12d 7359 . . . . 5 (𝜑 → (((1 / 𝑋) · 1) − ((1 / 𝑋) · (i · 𝑋))) = ((1 / 𝑋) − i))
3425, 33eqtrd 2766 . . . 4 (𝜑 → ((1 / 𝑋) · (1 − (i · 𝑋))) = ((1 / 𝑋) − i))
3534oveq2d 7357 . . 3 (𝜑 → (i + ((1 / 𝑋) · (1 − (i · 𝑋)))) = (i + ((1 / 𝑋) − i)))
3620, 19pncan3d 11470 . . 3 (𝜑 → (i + ((1 / 𝑋) − i)) = (1 / 𝑋))
3724, 35, 363eqtrrd 2771 . 2 (𝜑 → (1 / 𝑋) = (i + ((1 / 𝑋) · ((i + (1 − (i · 𝑋))) − i))))
383subid1d 11456 . . . . . 6 (𝜑 → (1 − 0) = 1)
3938, 3eqeltrd 2831 . . . . 5 (𝜑 → (1 − 0) ∈ ℂ)
4019, 39mulcld 11127 . . . 4 (𝜑 → ((1 / 𝑋) · (1 − 0)) ∈ ℂ)
4140addlidd 11309 . . 3 (𝜑 → (0 + ((1 / 𝑋) · (1 − 0))) = ((1 / 𝑋) · (1 − 0)))
4238oveq2d 7357 . . 3 (𝜑 → ((1 / 𝑋) · (1 − 0)) = ((1 / 𝑋) · 1))
4341, 42, 263eqtrrd 2771 . 2 (𝜑 → (1 / 𝑋) = (0 + ((1 / 𝑋) · (1 − 0))))
4438oveq2d 7357 . . . . . 6 (𝜑 → ((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0)) = ((∗‘((i + (1 − (i · 𝑋))) − i)) · 1))
4513constrcn 33765 . . . . . . . . 9 (𝜑 → (i + (1 − (i · 𝑋))) ∈ ℂ)
4645, 20subcld 11467 . . . . . . . 8 (𝜑 → ((i + (1 − (i · 𝑋))) − i) ∈ ℂ)
4746cjcld 15098 . . . . . . 7 (𝜑 → (∗‘((i + (1 − (i · 𝑋))) − i)) ∈ ℂ)
4847mulridd 11124 . . . . . 6 (𝜑 → ((∗‘((i + (1 − (i · 𝑋))) − i)) · 1) = (∗‘((i + (1 − (i · 𝑋))) − i)))
4922fveq2d 6821 . . . . . 6 (𝜑 → (∗‘((i + (1 − (i · 𝑋))) − i)) = (∗‘(1 − (i · 𝑋))))
5044, 48, 493eqtrd 2770 . . . . 5 (𝜑 → ((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0)) = (∗‘(1 − (i · 𝑋))))
5150fveq2d 6821 . . . 4 (𝜑 → (ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0))) = (ℑ‘(∗‘(1 − (i · 𝑋)))))
523, 6cjsubd 32718 . . . . . 6 (𝜑 → (∗‘(1 − (i · 𝑋))) = ((∗‘1) − (∗‘(i · 𝑋))))
53 1red 11108 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
5453cjred 15128 . . . . . . 7 (𝜑 → (∗‘1) = 1)
5520, 27cjmuld 15123 . . . . . . . 8 (𝜑 → (∗‘(i · 𝑋)) = ((∗‘i) · (∗‘𝑋)))
56 cji 15061 . . . . . . . . . 10 (∗‘i) = -i
5756a1i 11 . . . . . . . . 9 (𝜑 → (∗‘i) = -i)
5816cjred 15128 . . . . . . . . 9 (𝜑 → (∗‘𝑋) = 𝑋)
5957, 58oveq12d 7359 . . . . . . . 8 (𝜑 → ((∗‘i) · (∗‘𝑋)) = (-i · 𝑋))
6020, 27mulneg1d 11565 . . . . . . . 8 (𝜑 → (-i · 𝑋) = -(i · 𝑋))
6155, 59, 603eqtrd 2770 . . . . . . 7 (𝜑 → (∗‘(i · 𝑋)) = -(i · 𝑋))
6254, 61oveq12d 7359 . . . . . 6 (𝜑 → ((∗‘1) − (∗‘(i · 𝑋))) = (1 − -(i · 𝑋)))
633, 6subnegd 11474 . . . . . 6 (𝜑 → (1 − -(i · 𝑋)) = (1 + (i · 𝑋)))
6452, 62, 633eqtrd 2770 . . . . 5 (𝜑 → (∗‘(1 − (i · 𝑋))) = (1 + (i · 𝑋)))
6564fveq2d 6821 . . . 4 (𝜑 → (ℑ‘(∗‘(1 − (i · 𝑋)))) = (ℑ‘(1 + (i · 𝑋))))
6653, 16crimd 15134 . . . 4 (𝜑 → (ℑ‘(1 + (i · 𝑋))) = 𝑋)
6751, 65, 663eqtrd 2770 . . 3 (𝜑 → (ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0))) = 𝑋)
6867, 17eqnetrd 2995 . 2 (𝜑 → (ℑ‘((∗‘((i + (1 − (i · 𝑋))) − i)) · (1 − 0))) ≠ 0)
692, 13, 15, 9, 18, 18, 19, 37, 43, 68constrllcl 33761 1 (𝜑 → (1 / 𝑋) ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002  ici 11003   + caddc 11004   · cmul 11006  cmin 11339  -cneg 11340   / cdiv 11769  ccj 14998  cim 15000  Constrcconstr 33734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-constr 33735
This theorem is referenced by:  constrinvcl  33778
  Copyright terms: Public domain W3C validator