MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemn Structured version   Visualization version   GIF version

Theorem pntlemn 27644
Description: Lemma for pnt 27658. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
Assertion
Ref Expression
pntlemn ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽)))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐽   𝑧,𝐿   𝑧,𝐾   𝑧,𝑀   𝑧,𝑁   𝑧,𝑅   𝑧,𝑈   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌   𝑧,𝑎,𝐸   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑧,𝑎)   𝐴(𝑧,𝑎)   𝐵(𝑧,𝑎)   𝐶(𝑎)   𝐷(𝑧,𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑧,𝑎)   𝐽(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemn
StepHypRef Expression
1 pntlem1.u . . . . . 6 (𝜑𝑈 ∈ ℝ+)
21adantr 480 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑈 ∈ ℝ+)
32rpred 13077 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑈 ∈ ℝ)
4 simprl 771 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℕ)
53, 4nndivred 12320 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑈 / 𝐽) ∈ ℝ)
6 pntlem1.r . . . . . . . . . . 11 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
7 pntlem1.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ+)
8 pntlem1.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ+)
9 pntlem1.l . . . . . . . . . . 11 (𝜑𝐿 ∈ (0(,)1))
10 pntlem1.d . . . . . . . . . . 11 𝐷 = (𝐴 + 1)
11 pntlem1.f . . . . . . . . . . 11 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
12 pntlem1.u2 . . . . . . . . . . 11 (𝜑𝑈𝐴)
13 pntlem1.e . . . . . . . . . . 11 𝐸 = (𝑈 / 𝐷)
14 pntlem1.k . . . . . . . . . . 11 𝐾 = (exp‘(𝐵 / 𝐸))
15 pntlem1.y . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
16 pntlem1.x . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
17 pntlem1.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ+)
18 pntlem1.w . . . . . . . . . . 11 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
19 pntlem1.z . . . . . . . . . . 11 (𝜑𝑍 ∈ (𝑊[,)+∞))
206, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19pntlemb 27641 . . . . . . . . . 10 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2120simp1d 1143 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ+)
2221adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑍 ∈ ℝ+)
234nnrpd 13075 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℝ+)
2422, 23rpdivcld 13094 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ ℝ+)
256pntrf 27607 . . . . . . . 8 𝑅:ℝ+⟶ℝ
2625ffvelcdmi 7103 . . . . . . 7 ((𝑍 / 𝐽) ∈ ℝ+ → (𝑅‘(𝑍 / 𝐽)) ∈ ℝ)
2724, 26syl 17 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑅‘(𝑍 / 𝐽)) ∈ ℝ)
2827, 22rerpdivcld 13108 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / 𝑍) ∈ ℝ)
2928recnd 11289 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / 𝑍) ∈ ℂ)
3029abscld 15475 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ∈ ℝ)
315, 30resubcld 11691 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) ∈ ℝ)
3223relogcld 26665 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (log‘𝐽) ∈ ℝ)
3327recnd 11289 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑅‘(𝑍 / 𝐽)) ∈ ℂ)
3422rpcnne0d 13086 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
3523rpcnne0d 13086 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝐽 ∈ ℂ ∧ 𝐽 ≠ 0))
36 divdiv2 11979 . . . . . . . . 9 (((𝑅‘(𝑍 / 𝐽)) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (𝐽 ∈ ℂ ∧ 𝐽 ≠ 0)) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍))
3733, 34, 35, 36syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍))
384nncnd 12282 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℂ)
39 div23 11941 . . . . . . . . 9 (((𝑅‘(𝑍 / 𝐽)) ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4033, 38, 34, 39syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4137, 40eqtrd 2777 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4241fveq2d 6910 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) = (abs‘(((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽)))
4329, 38absmuld 15493 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘(((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽)) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · (abs‘𝐽)))
4423rprege0d 13084 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝐽 ∈ ℝ ∧ 0 ≤ 𝐽))
45 absid 15335 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽) → (abs‘𝐽) = 𝐽)
4644, 45syl 17 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘𝐽) = 𝐽)
4746oveq2d 7447 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · (abs‘𝐽)) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽))
4842, 43, 473eqtrd 2781 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽))
49 fveq2 6906 . . . . . . . . 9 (𝑧 = (𝑍 / 𝐽) → (𝑅𝑧) = (𝑅‘(𝑍 / 𝐽)))
50 id 22 . . . . . . . . 9 (𝑧 = (𝑍 / 𝐽) → 𝑧 = (𝑍 / 𝐽))
5149, 50oveq12d 7449 . . . . . . . 8 (𝑧 = (𝑍 / 𝐽) → ((𝑅𝑧) / 𝑧) = ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)))
5251fveq2d 6910 . . . . . . 7 (𝑧 = (𝑍 / 𝐽) → (abs‘((𝑅𝑧) / 𝑧)) = (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))))
5352breq1d 5153 . . . . . 6 (𝑧 = (𝑍 / 𝐽) → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈 ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) ≤ 𝑈))
54 pntlem1.U . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
5554adantr 480 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
5624rpred 13077 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ ℝ)
57 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ≤ (𝑍 / 𝑌))
5823rpred 13077 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℝ)
5922rpred 13077 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑍 ∈ ℝ)
6015simpld 494 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
6160adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ∈ ℝ+)
6258, 59, 61lemuldiv2d 13127 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑌 · 𝐽) ≤ 𝑍𝐽 ≤ (𝑍 / 𝑌)))
6357, 62mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑌 · 𝐽) ≤ 𝑍)
6461rpred 13077 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ∈ ℝ)
6564, 59, 23lemuldivd 13126 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑌 · 𝐽) ≤ 𝑍𝑌 ≤ (𝑍 / 𝐽)))
6663, 65mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ≤ (𝑍 / 𝐽))
67 elicopnf 13485 . . . . . . . 8 (𝑌 ∈ ℝ → ((𝑍 / 𝐽) ∈ (𝑌[,)+∞) ↔ ((𝑍 / 𝐽) ∈ ℝ ∧ 𝑌 ≤ (𝑍 / 𝐽))))
6864, 67syl 17 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑍 / 𝐽) ∈ (𝑌[,)+∞) ↔ ((𝑍 / 𝐽) ∈ ℝ ∧ 𝑌 ≤ (𝑍 / 𝐽))))
6956, 66, 68mpbir2and 713 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ (𝑌[,)+∞))
7053, 55, 69rspcdva 3623 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) ≤ 𝑈)
7148, 70eqbrtrrd 5167 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽) ≤ 𝑈)
7230, 3, 23lemuldivd 13126 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽) ≤ 𝑈 ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽)))
7371, 72mpbid 232 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽))
745, 30subge0d 11853 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (0 ≤ ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽)))
7573, 74mpbird 257 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))))
76 log1 26627 . . 3 (log‘1) = 0
77 nnge1 12294 . . . . 5 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
7877ad2antrl 728 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 1 ≤ 𝐽)
79 1rp 13038 . . . . 5 1 ∈ ℝ+
80 logleb 26645 . . . . 5 ((1 ∈ ℝ+𝐽 ∈ ℝ+) → (1 ≤ 𝐽 ↔ (log‘1) ≤ (log‘𝐽)))
8179, 23, 80sylancr 587 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (1 ≤ 𝐽 ↔ (log‘1) ≤ (log‘𝐽)))
8278, 81mpbid 232 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (log‘1) ≤ (log‘𝐽))
8376, 82eqbrtrrid 5179 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (log‘𝐽))
8431, 32, 75, 83mulge0d 11840 1 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  4c4 12323  cdc 12733  +crp 13034  (,)cioo 13387  [,)cico 13389  cfl 13830  cexp 14102  csqrt 15272  abscabs 15273  expce 16097  eceu 16098  logclog 26596  ψcchp 27136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-vma 27141  df-chp 27142
This theorem is referenced by:  pntlemj  27647  pntlemf  27649
  Copyright terms: Public domain W3C validator