MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd2 Structured version   Visualization version   GIF version

Theorem chebbnd2 27418
Description: The Chebyshev bound, part 2: The function π(𝑥) is eventually upper bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function π(𝑥) / (𝑥 / log(𝑥)) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd2 (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1)

Proof of Theorem chebbnd2
StepHypRef Expression
1 ovexd 7389 . . . . 5 (⊤ → (2[,)+∞) ∈ V)
2 ovexd 7389 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈ V)
3 ovexd 7389 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ V)
4 eqidd 2734 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)))
5 simpr 484 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ (2[,)+∞))
6 2re 12208 . . . . . . . . . . 11 2 ∈ ℝ
7 elicopnf 13349 . . . . . . . . . . 11 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
86, 7ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
95, 8sylib 218 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
10 chtrpcl 27115 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
119, 10syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ+)
1211rpcnne0d 12947 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
13 ppinncl 27114 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
149, 13syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℕ)
1514nnrpd 12936 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℝ+)
169simpld 494 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
17 1red 11122 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
186a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
19 1lt2 12300 . . . . . . . . . . . 12 1 < 2
2019a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 < 2)
219simprd 495 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
2217, 18, 16, 20, 21ltletrd 11282 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 < 𝑥)
2316, 22rplogcld 26568 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ+)
2415, 23rpmulcld 12954 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
2524rpcnne0d 12947 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((π𝑥) · (log‘𝑥)) ≠ 0))
26 recdiv 11836 . . . . . . 7 ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (((π𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((π𝑥) · (log‘𝑥)) ≠ 0)) → (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
2712, 25, 26syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
2827mpteq2dva 5188 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦ (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))))
291, 2, 3, 4, 28offval2 7638 . . . 4 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))))
30 0red 11124 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 ∈ ℝ)
31 2pos 12237 . . . . . . . . . . 11 0 < 2
3231a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 < 2)
3330, 18, 16, 32, 21ltletrd 11282 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 < 𝑥)
3416, 33elrpd 12935 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
3534rpcnne0d 12947 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
3624rpcnd 12940 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
37 dmdcan 11840 . . . . . . 7 ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((π𝑥) · (log‘𝑥)) ∈ ℂ) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
3812, 35, 36, 37syl3anc 1373 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
3915rpcnd 12940 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℂ)
4023rpcnne0d 12947 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
41 divdiv2 11842 . . . . . . 7 (((π𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0)) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
4239, 35, 40, 41syl3anc 1373 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
4338, 42eqtr4d 2771 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
4443mpteq2dva 5188 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
4529, 44eqtrd 2768 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
4634ex 412 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+))
4746ssrdv 3936 . . . . 5 (⊤ → (2[,)+∞) ⊆ ℝ+)
48 chto1ub 27417 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)
4948a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
5047, 49o1res2 15474 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
51 ax-1cn 11073 . . . . . . 7 1 ∈ ℂ
5251a1i 11 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℂ)
5311, 24rpdivcld 12955 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
5453rpcnd 12940 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
55 pnfxr 11175 . . . . . . . . 9 +∞ ∈ ℝ*
56 icossre 13332 . . . . . . . . 9 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (2[,)+∞) ⊆ ℝ)
576, 55, 56mp2an 692 . . . . . . . 8 (2[,)+∞) ⊆ ℝ
58 rlimconst 15455 . . . . . . . 8 (((2[,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
5957, 51, 58mp2an 692 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1
6059a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
61 chtppilim 27416 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
6261a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
63 ax-1ne0 11084 . . . . . . 7 1 ≠ 0
6463a1i 11 . . . . . 6 (⊤ → 1 ≠ 0)
6553rpne0d 12943 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
6652, 54, 60, 62, 64, 65rlimdiv 15557 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1))
67 rlimo1 15528 . . . . 5 ((𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1) → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
6866, 67syl 17 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
69 o1mul 15526 . . . 4 (((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1)) → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7050, 68, 69syl2anc 584 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7145, 70eqeltrrd 2834 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1))
7271mptru 1548 1 (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2113  wne 2929  Vcvv 3437  wss 3898   class class class wbr 5095  cmpt 5176  cfv 6488  (class class class)co 7354  f cof 7616  cc 11013  cr 11014  0cc0 11015  1c1 11016   · cmul 11020  +∞cpnf 11152  *cxr 11154   < clt 11155  cle 11156   / cdiv 11783  cn 12134  2c2 12189  +crp 12894  [,)cico 13251  𝑟 crli 15396  𝑂(1)co1 15397  logclog 26493  θccht 27031  πcppi 27034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-oadd 8397  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-dju 9803  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-xnn0 12464  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-o1 15401  df-lo1 15402  df-sum 15598  df-ef 15978  df-e 15979  df-sin 15980  df-cos 15981  df-pi 15983  df-dvds 16168  df-gcd 16410  df-prm 16587  df-pc 16753  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798  df-log 26495  df-cxp 26496  df-cht 27037  df-ppi 27040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator