MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd2 Structured version   Visualization version   GIF version

Theorem chebbnd2 27388
Description: The Chebyshev bound, part 2: The function π(𝑥) is eventually upper bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function π(𝑥) / (𝑥 / log(𝑥)) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd2 (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1)

Proof of Theorem chebbnd2
StepHypRef Expression
1 ovexd 7422 . . . . 5 (⊤ → (2[,)+∞) ∈ V)
2 ovexd 7422 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈ V)
3 ovexd 7422 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ V)
4 eqidd 2730 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)))
5 simpr 484 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ (2[,)+∞))
6 2re 12260 . . . . . . . . . . 11 2 ∈ ℝ
7 elicopnf 13406 . . . . . . . . . . 11 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
86, 7ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
95, 8sylib 218 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
10 chtrpcl 27085 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
119, 10syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ+)
1211rpcnne0d 13004 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
13 ppinncl 27084 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
149, 13syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℕ)
1514nnrpd 12993 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℝ+)
169simpld 494 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
17 1red 11175 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
186a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
19 1lt2 12352 . . . . . . . . . . . 12 1 < 2
2019a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 < 2)
219simprd 495 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
2217, 18, 16, 20, 21ltletrd 11334 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 < 𝑥)
2316, 22rplogcld 26538 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ+)
2415, 23rpmulcld 13011 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
2524rpcnne0d 13004 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((π𝑥) · (log‘𝑥)) ≠ 0))
26 recdiv 11888 . . . . . . 7 ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (((π𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((π𝑥) · (log‘𝑥)) ≠ 0)) → (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
2712, 25, 26syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
2827mpteq2dva 5200 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦ (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))))
291, 2, 3, 4, 28offval2 7673 . . . 4 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))))
30 0red 11177 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 ∈ ℝ)
31 2pos 12289 . . . . . . . . . . 11 0 < 2
3231a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 < 2)
3330, 18, 16, 32, 21ltletrd 11334 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 < 𝑥)
3416, 33elrpd 12992 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
3534rpcnne0d 13004 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
3624rpcnd 12997 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
37 dmdcan 11892 . . . . . . 7 ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((π𝑥) · (log‘𝑥)) ∈ ℂ) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
3812, 35, 36, 37syl3anc 1373 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
3915rpcnd 12997 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℂ)
4023rpcnne0d 13004 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
41 divdiv2 11894 . . . . . . 7 (((π𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0)) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
4239, 35, 40, 41syl3anc 1373 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
4338, 42eqtr4d 2767 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
4443mpteq2dva 5200 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
4529, 44eqtrd 2764 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
4634ex 412 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+))
4746ssrdv 3952 . . . . 5 (⊤ → (2[,)+∞) ⊆ ℝ+)
48 chto1ub 27387 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)
4948a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
5047, 49o1res2 15529 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
51 ax-1cn 11126 . . . . . . 7 1 ∈ ℂ
5251a1i 11 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℂ)
5311, 24rpdivcld 13012 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
5453rpcnd 12997 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
55 pnfxr 11228 . . . . . . . . 9 +∞ ∈ ℝ*
56 icossre 13389 . . . . . . . . 9 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (2[,)+∞) ⊆ ℝ)
576, 55, 56mp2an 692 . . . . . . . 8 (2[,)+∞) ⊆ ℝ
58 rlimconst 15510 . . . . . . . 8 (((2[,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
5957, 51, 58mp2an 692 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1
6059a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
61 chtppilim 27386 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
6261a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
63 ax-1ne0 11137 . . . . . . 7 1 ≠ 0
6463a1i 11 . . . . . 6 (⊤ → 1 ≠ 0)
6553rpne0d 13000 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
6652, 54, 60, 62, 64, 65rlimdiv 15612 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1))
67 rlimo1 15583 . . . . 5 ((𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1) → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
6866, 67syl 17 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
69 o1mul 15581 . . . 4 (((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1)) → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7050, 68, 69syl2anc 584 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7145, 70eqeltrrd 2829 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1))
7271mptru 1547 1 (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  f cof 7651  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  cn 12186  2c2 12241  +crp 12951  [,)cico 13308  𝑟 crli 15451  𝑂(1)co1 15452  logclog 26463  θccht 27001  πcppi 27004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-cht 27007  df-ppi 27010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator