MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd2 Structured version   Visualization version   GIF version

Theorem chebbnd2 26825
Description: The Chebyshev bound, part 2: The function π(𝑥) is eventually upper bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function π(𝑥) / (𝑥 / log(𝑥)) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd2 (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1)

Proof of Theorem chebbnd2
StepHypRef Expression
1 ovexd 7392 . . . . 5 (⊤ → (2[,)+∞) ∈ V)
2 ovexd 7392 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈ V)
3 ovexd 7392 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ V)
4 eqidd 2737 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)))
5 simpr 485 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ (2[,)+∞))
6 2re 12227 . . . . . . . . . . 11 2 ∈ ℝ
7 elicopnf 13362 . . . . . . . . . . 11 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
86, 7ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
95, 8sylib 217 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
10 chtrpcl 26524 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
119, 10syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ+)
1211rpcnne0d 12966 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
13 ppinncl 26523 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
149, 13syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℕ)
1514nnrpd 12955 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℝ+)
169simpld 495 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
17 1red 11156 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
186a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
19 1lt2 12324 . . . . . . . . . . . 12 1 < 2
2019a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 < 2)
219simprd 496 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
2217, 18, 16, 20, 21ltletrd 11315 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 < 𝑥)
2316, 22rplogcld 25984 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ+)
2415, 23rpmulcld 12973 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
2524rpcnne0d 12966 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((π𝑥) · (log‘𝑥)) ≠ 0))
26 recdiv 11861 . . . . . . 7 ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (((π𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((π𝑥) · (log‘𝑥)) ≠ 0)) → (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
2712, 25, 26syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
2827mpteq2dva 5205 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦ (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))))
291, 2, 3, 4, 28offval2 7637 . . . 4 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))))
30 0red 11158 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 ∈ ℝ)
31 2pos 12256 . . . . . . . . . . 11 0 < 2
3231a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 < 2)
3330, 18, 16, 32, 21ltletrd 11315 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 < 𝑥)
3416, 33elrpd 12954 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
3534rpcnne0d 12966 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
3624rpcnd 12959 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
37 dmdcan 11865 . . . . . . 7 ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((π𝑥) · (log‘𝑥)) ∈ ℂ) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
3812, 35, 36, 37syl3anc 1371 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
3915rpcnd 12959 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℂ)
4023rpcnne0d 12966 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
41 divdiv2 11867 . . . . . . 7 (((π𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0)) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
4239, 35, 40, 41syl3anc 1371 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
4338, 42eqtr4d 2779 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
4443mpteq2dva 5205 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
4529, 44eqtrd 2776 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
4634ex 413 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+))
4746ssrdv 3950 . . . . 5 (⊤ → (2[,)+∞) ⊆ ℝ+)
48 chto1ub 26824 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)
4948a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
5047, 49o1res2 15445 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
51 ax-1cn 11109 . . . . . . 7 1 ∈ ℂ
5251a1i 11 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℂ)
5311, 24rpdivcld 12974 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
5453rpcnd 12959 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
55 pnfxr 11209 . . . . . . . . 9 +∞ ∈ ℝ*
56 icossre 13345 . . . . . . . . 9 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (2[,)+∞) ⊆ ℝ)
576, 55, 56mp2an 690 . . . . . . . 8 (2[,)+∞) ⊆ ℝ
58 rlimconst 15426 . . . . . . . 8 (((2[,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
5957, 51, 58mp2an 690 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1
6059a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
61 chtppilim 26823 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
6261a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
63 ax-1ne0 11120 . . . . . . 7 1 ≠ 0
6463a1i 11 . . . . . 6 (⊤ → 1 ≠ 0)
6553rpne0d 12962 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
6652, 54, 60, 62, 64, 65rlimdiv 15530 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1))
67 rlimo1 15499 . . . . 5 ((𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1) → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
6866, 67syl 17 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
69 o1mul 15497 . . . 4 (((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1)) → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7050, 68, 69syl2anc 584 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7145, 70eqeltrrd 2839 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1))
7271mptru 1548 1 (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  wne 2943  Vcvv 3445  wss 3910   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  f cof 7615  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  cn 12153  2c2 12208  +crp 12915  [,)cico 13266  𝑟 crli 15367  𝑂(1)co1 15368  logclog 25910  θccht 26440  πcppi 26443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-o1 15372  df-lo1 15373  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-cht 26446  df-ppi 26449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator