MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemi Structured version   Visualization version   GIF version

Theorem pntlemi 26188
Description: Lemma for pnt 26198. Eliminate some assumptions from pntlemj 26187. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
Assertion
Ref Expression
pntlemi ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝐽   𝑢,𝑛,𝐿,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑂,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5034 . . . . . . 7 (𝑧 = 𝑥 → (𝑦 < 𝑧𝑦 < 𝑥))
2 oveq2 7143 . . . . . . . 8 (𝑧 = 𝑥 → ((1 + (𝐿 · 𝐸)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑥))
32breq1d 5040 . . . . . . 7 (𝑧 = 𝑥 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)))
41, 3anbi12d 633 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ↔ (𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦))))
5 id 22 . . . . . . . 8 (𝑧 = 𝑥𝑧 = 𝑥)
65, 2oveq12d 7153 . . . . . . 7 (𝑧 = 𝑥 → (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧)) = (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥)))
76raleqdv 3364 . . . . . 6 (𝑧 = 𝑥 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
84, 7anbi12d 633 . . . . 5 (𝑧 = 𝑥 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
98cbvrexvw 3397 . . . 4 (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
10 breq1 5033 . . . . . . 7 (𝑦 = (𝐾𝐽) → (𝑦 < 𝑥 ↔ (𝐾𝐽) < 𝑥))
11 oveq2 7143 . . . . . . . 8 (𝑦 = (𝐾𝐽) → (𝐾 · 𝑦) = (𝐾 · (𝐾𝐽)))
1211breq2d 5042 . . . . . . 7 (𝑦 = (𝐾𝐽) → (((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))))
1310, 12anbi12d 633 . . . . . 6 (𝑦 = (𝐾𝐽) → ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ↔ ((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽)))))
1413anbi1d 632 . . . . 5 (𝑦 = (𝐾𝐽) → (((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1514rexbidv 3256 . . . 4 (𝑦 = (𝐾𝐽) → (∃𝑥 ∈ ℝ+ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
169, 15syl5bb 286 . . 3 (𝑦 = (𝐾𝐽) → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
17 pntlem1.K . . . 4 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
1817adantr 484 . . 3 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
19 pntlem1.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
20 pntlem1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
21 pntlem1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
22 pntlem1.l . . . . . . . 8 (𝜑𝐿 ∈ (0(,)1))
23 pntlem1.d . . . . . . . 8 𝐷 = (𝐴 + 1)
24 pntlem1.f . . . . . . . 8 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
25 pntlem1.u . . . . . . . 8 (𝜑𝑈 ∈ ℝ+)
26 pntlem1.u2 . . . . . . . 8 (𝜑𝑈𝐴)
27 pntlem1.e . . . . . . . 8 𝐸 = (𝑈 / 𝐷)
28 pntlem1.k . . . . . . . 8 𝐾 = (exp‘(𝐵 / 𝐸))
2919, 20, 21, 22, 23, 24, 25, 26, 27, 28pntlemc 26179 . . . . . . 7 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3029simp2d 1140 . . . . . 6 (𝜑𝐾 ∈ ℝ+)
31 elfzoelz 13033 . . . . . 6 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
32 rpexpcl 13444 . . . . . 6 ((𝐾 ∈ ℝ+𝐽 ∈ ℤ) → (𝐾𝐽) ∈ ℝ+)
3330, 31, 32syl2an 598 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ ℝ+)
3433rpred 12419 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ ℝ)
35 elfzofz 13048 . . . . . 6 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (𝑀...𝑁))
36 pntlem1.y . . . . . . 7 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
37 pntlem1.x . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
38 pntlem1.c . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
39 pntlem1.w . . . . . . 7 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
40 pntlem1.z . . . . . . 7 (𝜑𝑍 ∈ (𝑊[,)+∞))
41 pntlem1.m . . . . . . 7 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
42 pntlem1.n . . . . . . 7 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
4319, 20, 21, 22, 23, 24, 25, 26, 27, 28, 36, 37, 38, 39, 40, 41, 42pntlemh 26183 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
4435, 43sylan2 595 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
4544simpld 498 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → 𝑋 < (𝐾𝐽))
4637simpld 498 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
4746adantr 484 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ+)
48 rpxr 12386 . . . . 5 (𝑋 ∈ ℝ+𝑋 ∈ ℝ*)
49 elioopnf 12821 . . . . 5 (𝑋 ∈ ℝ* → ((𝐾𝐽) ∈ (𝑋(,)+∞) ↔ ((𝐾𝐽) ∈ ℝ ∧ 𝑋 < (𝐾𝐽))))
5047, 48, 493syl 18 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝐾𝐽) ∈ (𝑋(,)+∞) ↔ ((𝐾𝐽) ∈ ℝ ∧ 𝑋 < (𝐾𝐽))))
5134, 45, 50mpbir2and 712 . . 3 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ (𝑋(,)+∞))
5216, 18, 51rspcdva 3573 . 2 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
5320ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐴 ∈ ℝ+)
5421ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐵 ∈ ℝ+)
5522ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐿 ∈ (0(,)1))
5625ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑈 ∈ ℝ+)
5726ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑈𝐴)
5836ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
5937ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (𝑋 ∈ ℝ+𝑌 < 𝑋))
6038ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐶 ∈ ℝ+)
6140ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑍 ∈ (𝑊[,)+∞))
62 pntlem1.U . . . 4 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6362ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6417ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
65 pntlem1.o . . 3 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
66 simprl 770 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑥 ∈ ℝ+)
67 simprr 772 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
68 simplr 768 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐽 ∈ (𝑀..^𝑁))
69 eqid 2798 . . 3 (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑥))) + 1)...(⌊‘(𝑍 / 𝑥))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑥))) + 1)...(⌊‘(𝑍 / 𝑥)))
7019, 53, 54, 55, 23, 24, 56, 57, 27, 28, 58, 59, 60, 39, 61, 41, 42, 63, 64, 65, 66, 67, 68, 69pntlemj 26187 . 2 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
7152, 70rexlimddv 3250 1 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  3c3 11681  4c4 11682  8c8 11686  cz 11969  cdc 12086  +crp 12377  (,)cioo 12726  [,)cico 12728  [,]cicc 12729  ...cfz 12885  ..^cfzo 13028  cfl 13155  cexp 13425  csqrt 14584  abscabs 14585  Σcsu 15034  expce 15407  logclog 25146  ψcchp 25678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-vma 25683  df-chp 25684
This theorem is referenced by:  pntlemf  26189
  Copyright terms: Public domain W3C validator