MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemi Structured version   Visualization version   GIF version

Theorem pntlemi 27522
Description: Lemma for pnt 27532. Eliminate some assumptions from pntlemj 27521. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
Assertion
Ref Expression
pntlemi ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝐽   𝑢,𝑛,𝐿,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑂,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5114 . . . . . . 7 (𝑧 = 𝑥 → (𝑦 < 𝑧𝑦 < 𝑥))
2 oveq2 7398 . . . . . . . 8 (𝑧 = 𝑥 → ((1 + (𝐿 · 𝐸)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑥))
32breq1d 5120 . . . . . . 7 (𝑧 = 𝑥 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)))
41, 3anbi12d 632 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ↔ (𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦))))
5 id 22 . . . . . . . 8 (𝑧 = 𝑥𝑧 = 𝑥)
65, 2oveq12d 7408 . . . . . . 7 (𝑧 = 𝑥 → (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧)) = (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥)))
76raleqdv 3301 . . . . . 6 (𝑧 = 𝑥 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
84, 7anbi12d 632 . . . . 5 (𝑧 = 𝑥 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
98cbvrexvw 3217 . . . 4 (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
10 breq1 5113 . . . . . . 7 (𝑦 = (𝐾𝐽) → (𝑦 < 𝑥 ↔ (𝐾𝐽) < 𝑥))
11 oveq2 7398 . . . . . . . 8 (𝑦 = (𝐾𝐽) → (𝐾 · 𝑦) = (𝐾 · (𝐾𝐽)))
1211breq2d 5122 . . . . . . 7 (𝑦 = (𝐾𝐽) → (((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))))
1310, 12anbi12d 632 . . . . . 6 (𝑦 = (𝐾𝐽) → ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ↔ ((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽)))))
1413anbi1d 631 . . . . 5 (𝑦 = (𝐾𝐽) → (((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1514rexbidv 3158 . . . 4 (𝑦 = (𝐾𝐽) → (∃𝑥 ∈ ℝ+ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
169, 15bitrid 283 . . 3 (𝑦 = (𝐾𝐽) → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
17 pntlem1.K . . . 4 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
1817adantr 480 . . 3 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
19 pntlem1.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
20 pntlem1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
21 pntlem1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
22 pntlem1.l . . . . . . . 8 (𝜑𝐿 ∈ (0(,)1))
23 pntlem1.d . . . . . . . 8 𝐷 = (𝐴 + 1)
24 pntlem1.f . . . . . . . 8 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
25 pntlem1.u . . . . . . . 8 (𝜑𝑈 ∈ ℝ+)
26 pntlem1.u2 . . . . . . . 8 (𝜑𝑈𝐴)
27 pntlem1.e . . . . . . . 8 𝐸 = (𝑈 / 𝐷)
28 pntlem1.k . . . . . . . 8 𝐾 = (exp‘(𝐵 / 𝐸))
2919, 20, 21, 22, 23, 24, 25, 26, 27, 28pntlemc 27513 . . . . . . 7 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3029simp2d 1143 . . . . . 6 (𝜑𝐾 ∈ ℝ+)
31 elfzoelz 13627 . . . . . 6 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
32 rpexpcl 14052 . . . . . 6 ((𝐾 ∈ ℝ+𝐽 ∈ ℤ) → (𝐾𝐽) ∈ ℝ+)
3330, 31, 32syl2an 596 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ ℝ+)
3433rpred 13002 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ ℝ)
35 elfzofz 13643 . . . . . 6 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (𝑀...𝑁))
36 pntlem1.y . . . . . . 7 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
37 pntlem1.x . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
38 pntlem1.c . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
39 pntlem1.w . . . . . . 7 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
40 pntlem1.z . . . . . . 7 (𝜑𝑍 ∈ (𝑊[,)+∞))
41 pntlem1.m . . . . . . 7 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
42 pntlem1.n . . . . . . 7 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
4319, 20, 21, 22, 23, 24, 25, 26, 27, 28, 36, 37, 38, 39, 40, 41, 42pntlemh 27517 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
4435, 43sylan2 593 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
4544simpld 494 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → 𝑋 < (𝐾𝐽))
4637simpld 494 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
4746adantr 480 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ+)
48 rpxr 12968 . . . . 5 (𝑋 ∈ ℝ+𝑋 ∈ ℝ*)
49 elioopnf 13411 . . . . 5 (𝑋 ∈ ℝ* → ((𝐾𝐽) ∈ (𝑋(,)+∞) ↔ ((𝐾𝐽) ∈ ℝ ∧ 𝑋 < (𝐾𝐽))))
5047, 48, 493syl 18 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝐾𝐽) ∈ (𝑋(,)+∞) ↔ ((𝐾𝐽) ∈ ℝ ∧ 𝑋 < (𝐾𝐽))))
5134, 45, 50mpbir2and 713 . . 3 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ (𝑋(,)+∞))
5216, 18, 51rspcdva 3592 . 2 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
5320ad2antrr 726 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐴 ∈ ℝ+)
5421ad2antrr 726 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐵 ∈ ℝ+)
5522ad2antrr 726 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐿 ∈ (0(,)1))
5625ad2antrr 726 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑈 ∈ ℝ+)
5726ad2antrr 726 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑈𝐴)
5836ad2antrr 726 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
5937ad2antrr 726 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (𝑋 ∈ ℝ+𝑌 < 𝑋))
6038ad2antrr 726 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐶 ∈ ℝ+)
6140ad2antrr 726 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑍 ∈ (𝑊[,)+∞))
62 pntlem1.U . . . 4 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6362ad2antrr 726 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6417ad2antrr 726 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
65 pntlem1.o . . 3 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
66 simprl 770 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑥 ∈ ℝ+)
67 simprr 772 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
68 simplr 768 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐽 ∈ (𝑀..^𝑁))
69 eqid 2730 . . 3 (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑥))) + 1)...(⌊‘(𝑍 / 𝑥))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑥))) + 1)...(⌊‘(𝑍 / 𝑥)))
7019, 53, 54, 55, 23, 24, 56, 57, 27, 28, 58, 59, 60, 39, 61, 41, 42, 63, 64, 65, 66, 67, 68, 69pntlemj 27521 . 2 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
7152, 70rexlimddv 3141 1 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  2c2 12248  3c3 12249  4c4 12250  8c8 12254  cz 12536  cdc 12656  +crp 12958  (,)cioo 13313  [,)cico 13315  [,]cicc 13316  ...cfz 13475  ..^cfzo 13622  cfl 13759  cexp 14033  csqrt 15206  abscabs 15207  Σcsu 15659  expce 16034  logclog 26470  ψcchp 27010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-e 16041  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-vma 27015  df-chp 27016
This theorem is referenced by:  pntlemf  27523
  Copyright terms: Public domain W3C validator