MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemi Structured version   Visualization version   GIF version

Theorem pntlemi 27666
Description: Lemma for pnt 27676. Eliminate some assumptions from pntlemj 27665. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
Assertion
Ref Expression
pntlemi ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝐽   𝑢,𝑛,𝐿,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑂,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . . . . . 7 (𝑧 = 𝑥 → (𝑦 < 𝑧𝑦 < 𝑥))
2 oveq2 7456 . . . . . . . 8 (𝑧 = 𝑥 → ((1 + (𝐿 · 𝐸)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑥))
32breq1d 5176 . . . . . . 7 (𝑧 = 𝑥 → (((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)))
41, 3anbi12d 631 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ↔ (𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦))))
5 id 22 . . . . . . . 8 (𝑧 = 𝑥𝑧 = 𝑥)
65, 2oveq12d 7466 . . . . . . 7 (𝑧 = 𝑥 → (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧)) = (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥)))
76raleqdv 3334 . . . . . 6 (𝑧 = 𝑥 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸 ↔ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
84, 7anbi12d 631 . . . . 5 (𝑧 = 𝑥 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
98cbvrexvw 3244 . . . 4 (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
10 breq1 5169 . . . . . . 7 (𝑦 = (𝐾𝐽) → (𝑦 < 𝑥 ↔ (𝐾𝐽) < 𝑥))
11 oveq2 7456 . . . . . . . 8 (𝑦 = (𝐾𝐽) → (𝐾 · 𝑦) = (𝐾 · (𝐾𝐽)))
1211breq2d 5178 . . . . . . 7 (𝑦 = (𝐾𝐽) → (((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))))
1310, 12anbi12d 631 . . . . . 6 (𝑦 = (𝐾𝐽) → ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ↔ ((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽)))))
1413anbi1d 630 . . . . 5 (𝑦 = (𝐾𝐽) → (((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1514rexbidv 3185 . . . 4 (𝑦 = (𝐾𝐽) → (∃𝑥 ∈ ℝ+ ((𝑦 < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
169, 15bitrid 283 . . 3 (𝑦 = (𝐾𝐽) → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
17 pntlem1.K . . . 4 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
1817adantr 480 . . 3 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
19 pntlem1.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
20 pntlem1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
21 pntlem1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
22 pntlem1.l . . . . . . . 8 (𝜑𝐿 ∈ (0(,)1))
23 pntlem1.d . . . . . . . 8 𝐷 = (𝐴 + 1)
24 pntlem1.f . . . . . . . 8 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
25 pntlem1.u . . . . . . . 8 (𝜑𝑈 ∈ ℝ+)
26 pntlem1.u2 . . . . . . . 8 (𝜑𝑈𝐴)
27 pntlem1.e . . . . . . . 8 𝐸 = (𝑈 / 𝐷)
28 pntlem1.k . . . . . . . 8 𝐾 = (exp‘(𝐵 / 𝐸))
2919, 20, 21, 22, 23, 24, 25, 26, 27, 28pntlemc 27657 . . . . . . 7 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3029simp2d 1143 . . . . . 6 (𝜑𝐾 ∈ ℝ+)
31 elfzoelz 13716 . . . . . 6 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
32 rpexpcl 14131 . . . . . 6 ((𝐾 ∈ ℝ+𝐽 ∈ ℤ) → (𝐾𝐽) ∈ ℝ+)
3330, 31, 32syl2an 595 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ ℝ+)
3433rpred 13099 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ ℝ)
35 elfzofz 13732 . . . . . 6 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (𝑀...𝑁))
36 pntlem1.y . . . . . . 7 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
37 pntlem1.x . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
38 pntlem1.c . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
39 pntlem1.w . . . . . . 7 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
40 pntlem1.z . . . . . . 7 (𝜑𝑍 ∈ (𝑊[,)+∞))
41 pntlem1.m . . . . . . 7 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
42 pntlem1.n . . . . . . 7 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
4319, 20, 21, 22, 23, 24, 25, 26, 27, 28, 36, 37, 38, 39, 40, 41, 42pntlemh 27661 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
4435, 43sylan2 592 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
4544simpld 494 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → 𝑋 < (𝐾𝐽))
4637simpld 494 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
4746adantr 480 . . . . 5 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ+)
48 rpxr 13066 . . . . 5 (𝑋 ∈ ℝ+𝑋 ∈ ℝ*)
49 elioopnf 13503 . . . . 5 (𝑋 ∈ ℝ* → ((𝐾𝐽) ∈ (𝑋(,)+∞) ↔ ((𝐾𝐽) ∈ ℝ ∧ 𝑋 < (𝐾𝐽))))
5047, 48, 493syl 18 . . . 4 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝐾𝐽) ∈ (𝑋(,)+∞) ↔ ((𝐾𝐽) ∈ ℝ ∧ 𝑋 < (𝐾𝐽))))
5134, 45, 50mpbir2and 712 . . 3 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → (𝐾𝐽) ∈ (𝑋(,)+∞))
5216, 18, 51rspcdva 3636 . 2 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ∃𝑥 ∈ ℝ+ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
5320ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐴 ∈ ℝ+)
5421ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐵 ∈ ℝ+)
5522ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐿 ∈ (0(,)1))
5625ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑈 ∈ ℝ+)
5726ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑈𝐴)
5836ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
5937ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (𝑋 ∈ ℝ+𝑌 < 𝑋))
6038ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐶 ∈ ℝ+)
6140ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑍 ∈ (𝑊[,)+∞))
62 pntlem1.U . . . 4 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6362ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6417ad2antrr 725 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
65 pntlem1.o . . 3 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
66 simprl 770 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝑥 ∈ ℝ+)
67 simprr 772 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
68 simplr 768 . . 3 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → 𝐽 ∈ (𝑀..^𝑁))
69 eqid 2740 . . 3 (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑥))) + 1)...(⌊‘(𝑍 / 𝑥))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑥))) + 1)...(⌊‘(𝑍 / 𝑥)))
7019, 53, 54, 55, 23, 24, 56, 57, 27, 28, 58, 59, 60, 39, 61, 41, 42, 63, 64, 65, 66, 67, 68, 69pntlemj 27665 . 2 (((𝜑𝐽 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ ℝ+ ∧ (((𝐾𝐽) < 𝑥 ∧ ((1 + (𝐿 · 𝐸)) · 𝑥) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑥[,]((1 + (𝐿 · 𝐸)) · 𝑥))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
7152, 70rexlimddv 3167 1 ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  3c3 12349  4c4 12350  8c8 12354  cz 12639  cdc 12758  +crp 13057  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  ...cfz 13567  ..^cfzo 13711  cfl 13841  cexp 14112  csqrt 15282  abscabs 15283  Σcsu 15734  expce 16109  logclog 26614  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-vma 27159  df-chp 27160
This theorem is referenced by:  pntlemf  27667
  Copyright terms: Public domain W3C validator