Proof of Theorem pfxccatin12lem2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | swrdccatin2.l | . . . . 5
⊢ 𝐿 = (♯‘𝐴) | 
| 2 | 1 | pfxccatin12lem2c 14768 | . . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) | 
| 3 |  | simprl 771 | . . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ (0..^(𝑁 − 𝑀))) | 
| 4 |  | swrdfv 14686 | . . . 4
⊢ ((((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝐾 ∈ (0..^(𝑁 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀))) | 
| 5 | 2, 3, 4 | syl2an2r 685 | . . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀))) | 
| 6 |  | elfzoelz 13699 | . . . . . . . 8
⊢ (𝐾 ∈ (0..^(𝑁 − 𝑀)) → 𝐾 ∈ ℤ) | 
| 7 |  | elfz2nn0 13658 | . . . . . . . . . 10
⊢ (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝑀 ≤ 𝐿)) | 
| 8 |  | nn0cn 12536 | . . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℂ) | 
| 9 |  | nn0cn 12536 | . . . . . . . . . . . . . . . 16
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℂ) | 
| 10 | 8, 9 | anim12i 613 | . . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) | 
| 11 |  | zcn 12618 | . . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) | 
| 12 |  | subcl 11507 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿 − 𝑀) ∈ ℂ) | 
| 13 | 12 | ancoms 458 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿 − 𝑀) ∈ ℂ) | 
| 14 | 13 | anim1ci 616 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 ∈ ℂ ∧ (𝐿 − 𝑀) ∈ ℂ)) | 
| 15 |  | subcl 11507 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ ℂ ∧ (𝐿 − 𝑀) ∈ ℂ) → (𝐾 − (𝐿 − 𝑀)) ∈ ℂ) | 
| 16 | 14, 15 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿 − 𝑀)) ∈ ℂ) | 
| 17 | 16 | addridd 11461 | . . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 − (𝐿 − 𝑀)) + 0) = (𝐾 − (𝐿 − 𝑀))) | 
| 18 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐾 ∈
ℂ) | 
| 19 |  | simplr 769 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐿 ∈
ℂ) | 
| 20 |  | simpll 767 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝑀 ∈
ℂ) | 
| 21 | 18, 19, 20 | subsub3d 11650 | . . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿 − 𝑀)) = ((𝐾 + 𝑀) − 𝐿)) | 
| 22 | 17, 21 | eqtr2d 2778 | . . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿 − 𝑀)) + 0)) | 
| 23 | 10, 11, 22 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿 − 𝑀)) + 0)) | 
| 24 |  | oveq2 7439 | . . . . . . . . . . . . . . . 16
⊢
((♯‘𝐴) =
𝐿 → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 + 𝑀) − 𝐿)) | 
| 25 | 24 | eqcoms 2745 | . . . . . . . . . . . . . . 15
⊢ (𝐿 = (♯‘𝐴) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 + 𝑀) − 𝐿)) | 
| 26 | 25 | eqeq1d 2739 | . . . . . . . . . . . . . 14
⊢ (𝐿 = (♯‘𝐴) → (((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0) ↔ ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿 − 𝑀)) + 0))) | 
| 27 | 23, 26 | imbitrrid 246 | . . . . . . . . . . . . 13
⊢ (𝐿 = (♯‘𝐴) → (((𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0)
∧ 𝐾 ∈ ℤ)
→ ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) | 
| 28 | 1, 27 | ax-mp 5 | . . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0)) | 
| 29 | 28 | ex 412 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) | 
| 30 | 29 | 3adant3 1133 | . . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝑀
≤ 𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) | 
| 31 | 7, 30 | sylbi 217 | . . . . . . . . 9
⊢ (𝑀 ∈ (0...𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) | 
| 32 | 31 | ad2antrl 728 | . . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) | 
| 33 | 6, 32 | syl5com 31 | . . . . . . 7
⊢ (𝐾 ∈ (0..^(𝑁 − 𝑀)) → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) | 
| 34 | 33 | adantr 480 | . . . . . 6
⊢ ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) | 
| 35 | 34 | impcom 407 | . . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0)) | 
| 36 | 35 | fveq2d 6910 | . . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴))) = (𝐵‘((𝐾 − (𝐿 − 𝑀)) + 0))) | 
| 37 |  | simpll 767 | . . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | 
| 38 |  | pfxccatin12lem2a 14765 | . . . . . . . . 9
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))) | 
| 39 | 38 | adantl 481 | . . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))) | 
| 40 | 39 | imp 406 | . . . . . . 7
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))) | 
| 41 |  | id 22 | . . . . . . . . . . 11
⊢
((♯‘𝐴) =
𝐿 →
(♯‘𝐴) = 𝐿) | 
| 42 |  | oveq1 7438 | . . . . . . . . . . 11
⊢
((♯‘𝐴) =
𝐿 →
((♯‘𝐴) +
(♯‘𝐵)) = (𝐿 + (♯‘𝐵))) | 
| 43 | 41, 42 | oveq12d 7449 | . . . . . . . . . 10
⊢
((♯‘𝐴) =
𝐿 →
((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) = (𝐿..^(𝐿 + (♯‘𝐵)))) | 
| 44 | 43 | eleq2d 2827 | . . . . . . . . 9
⊢
((♯‘𝐴) =
𝐿 → ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))) | 
| 45 | 44 | eqcoms 2745 | . . . . . . . 8
⊢ (𝐿 = (♯‘𝐴) → ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))) | 
| 46 | 1, 45 | ax-mp 5 | . . . . . . 7
⊢ ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))) | 
| 47 | 40, 46 | sylibr 234 | . . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) | 
| 48 |  | df-3an 1089 | . . . . . 6
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))) | 
| 49 | 37, 47, 48 | sylanbrc 583 | . . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))) | 
| 50 |  | ccatval2 14616 | . . . . 5
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴)))) | 
| 51 | 49, 50 | syl 17 | . . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴)))) | 
| 52 |  | simplr 769 | . . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐵 ∈ Word 𝑉) | 
| 53 | 52 | adantr 480 | . . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐵 ∈ Word 𝑉) | 
| 54 |  | lencl 14571 | . . . . . . . . . 10
⊢ (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈
ℕ0) | 
| 55 |  | elfzel2 13562 | . . . . . . . . . . . 12
⊢ (𝑀 ∈ (0...𝐿) → 𝐿 ∈ ℤ) | 
| 56 |  | zsubcl 12659 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁 − 𝐿) ∈ ℤ) | 
| 57 | 56 | ancoms 458 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 𝐿) ∈ ℤ) | 
| 58 | 57 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿 ≤ 𝑁) → (𝑁 − 𝐿) ∈ ℤ) | 
| 59 |  | zre 12617 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) | 
| 60 |  | zre 12617 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐿 ∈ ℤ → 𝐿 ∈
ℝ) | 
| 61 |  | subge0 11776 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤
(𝑁 − 𝐿) ↔ 𝐿 ≤ 𝑁)) | 
| 62 | 59, 60, 61 | syl2anr 597 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤
(𝑁 − 𝐿) ↔ 𝐿 ≤ 𝑁)) | 
| 63 | 62 | biimprd 248 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿 ≤ 𝑁 → 0 ≤ (𝑁 − 𝐿))) | 
| 64 | 63 | imp 406 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿 ≤ 𝑁) → 0 ≤ (𝑁 − 𝐿)) | 
| 65 |  | elnn0z 12626 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑁 − 𝐿) ∈ ℕ0 ↔ ((𝑁 − 𝐿) ∈ ℤ ∧ 0 ≤ (𝑁 − 𝐿))) | 
| 66 | 58, 64, 65 | sylanbrc 583 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿 ≤ 𝑁) → (𝑁 − 𝐿) ∈
ℕ0) | 
| 67 | 66 | expcom 413 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐿 ≤ 𝑁 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 𝐿) ∈
ℕ0)) | 
| 68 | 67 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 𝐿) ∈
ℕ0)) | 
| 69 | 68 | expcomd 416 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝑁 ∈ ℤ → (𝐿 ∈ ℤ → (𝑁 − 𝐿) ∈
ℕ0))) | 
| 70 | 69 | com12 32 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℤ → ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℤ → (𝑁 − 𝐿) ∈
ℕ0))) | 
| 71 | 70 | 3ad2ant3 1136 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℤ → (𝑁 − 𝐿) ∈
ℕ0))) | 
| 72 | 71 | imp 406 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℤ → (𝑁 − 𝐿) ∈
ℕ0)) | 
| 73 | 72 | com12 32 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐿 ∈ ℤ → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈
ℕ0)) | 
| 74 | 73 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈
ℕ0)) | 
| 75 | 74 | imp 406 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (𝑁 − 𝐿) ∈
ℕ0) | 
| 76 |  | simplr 769 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (♯‘𝐵) ∈
ℕ0) | 
| 77 | 59 | 3ad2ant3 1136 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℝ) | 
| 78 | 77 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ) | 
| 79 | 60 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → 𝐿 ∈ ℝ) | 
| 80 | 79 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐿 ∈ ℝ) | 
| 81 |  | nn0re 12535 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((♯‘𝐵)
∈ ℕ0 → (♯‘𝐵) ∈ ℝ) | 
| 82 | 81 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → (♯‘𝐵) ∈ ℝ) | 
| 83 | 82 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) →
(♯‘𝐵) ∈
ℝ) | 
| 84 |  | lesubadd2 11736 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧
(♯‘𝐵) ∈
ℝ) → ((𝑁 −
𝐿) ≤
(♯‘𝐵) ↔
𝑁 ≤ (𝐿 + (♯‘𝐵)))) | 
| 85 | 84 | biimprd 248 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧
(♯‘𝐵) ∈
ℝ) → (𝑁 ≤
(𝐿 + (♯‘𝐵)) → (𝑁 − 𝐿) ≤ (♯‘𝐵))) | 
| 86 | 78, 80, 83, 85 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ≤ (𝐿 + (♯‘𝐵)) → (𝑁 − 𝐿) ≤ (♯‘𝐵))) | 
| 87 | 86 | ex 412 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ (𝐿 + (♯‘𝐵)) → (𝑁 − 𝐿) ≤ (♯‘𝐵)))) | 
| 88 | 87 | com13 88 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ≤ (𝐿 + (♯‘𝐵)) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0)
→ (𝑁 − 𝐿) ≤ (♯‘𝐵)))) | 
| 89 | 88 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0)
→ (𝑁 − 𝐿) ≤ (♯‘𝐵)))) | 
| 90 | 89 | impcom 407 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0)
→ (𝑁 − 𝐿) ≤ (♯‘𝐵))) | 
| 91 | 90 | impcom 407 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (𝑁 − 𝐿) ≤ (♯‘𝐵)) | 
| 92 | 75, 76, 91 | 3jca 1129 | . . . . . . . . . . . . . . . 16
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) → ((𝑁 − 𝐿) ∈ ℕ0 ∧
(♯‘𝐵) ∈
ℕ0 ∧ (𝑁 − 𝐿) ≤ (♯‘𝐵))) | 
| 93 | 92 | ex 412 | . . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → ((𝑁 − 𝐿) ∈ ℕ0 ∧
(♯‘𝐵) ∈
ℕ0 ∧ (𝑁 − 𝐿) ≤ (♯‘𝐵)))) | 
| 94 |  | elfz2 13554 | . . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) | 
| 95 |  | elfz2nn0 13658 | . . . . . . . . . . . . . . 15
⊢ ((𝑁 − 𝐿) ∈ (0...(♯‘𝐵)) ↔ ((𝑁 − 𝐿) ∈ ℕ0 ∧
(♯‘𝐵) ∈
ℕ0 ∧ (𝑁 − 𝐿) ≤ (♯‘𝐵))) | 
| 96 | 93, 94, 95 | 3imtr4g 296 | . . . . . . . . . . . . . 14
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵)))) | 
| 97 | 96 | ex 412 | . . . . . . . . . . . . 13
⊢ (𝐿 ∈ ℤ →
((♯‘𝐵) ∈
ℕ0 → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))))) | 
| 98 | 97 | com23 86 | . . . . . . . . . . . 12
⊢ (𝐿 ∈ ℤ → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((♯‘𝐵) ∈ ℕ0 → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))))) | 
| 99 | 55, 98 | syl 17 | . . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((♯‘𝐵) ∈ ℕ0 → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))))) | 
| 100 | 99 | imp 406 | . . . . . . . . . 10
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐵) ∈ ℕ0
→ (𝑁 − 𝐿) ∈
(0...(♯‘𝐵)))) | 
| 101 | 54, 100 | syl5com 31 | . . . . . . . . 9
⊢ (𝐵 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵)))) | 
| 102 | 101 | adantl 481 | . . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵)))) | 
| 103 | 102 | imp 406 | . . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) | 
| 104 | 103 | adantr 480 | . . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) | 
| 105 |  | pfxccatin12lem1 14766 | . . . . . . . 8
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (𝐾 − (𝐿 − 𝑀)) ∈ (0..^(𝑁 − 𝐿)))) | 
| 106 | 105 | adantl 481 | . . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (𝐾 − (𝐿 − 𝑀)) ∈ (0..^(𝑁 − 𝐿)))) | 
| 107 | 106 | imp 406 | . . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 − (𝐿 − 𝑀)) ∈ (0..^(𝑁 − 𝐿))) | 
| 108 |  | pfxfv 14720 | . . . . . 6
⊢ ((𝐵 ∈ Word 𝑉 ∧ (𝑁 − 𝐿) ∈ (0...(♯‘𝐵)) ∧ (𝐾 − (𝐿 − 𝑀)) ∈ (0..^(𝑁 − 𝐿))) → ((𝐵 prefix (𝑁 − 𝐿))‘(𝐾 − (𝐿 − 𝑀))) = (𝐵‘(𝐾 − (𝐿 − 𝑀)))) | 
| 109 | 53, 104, 107, 108 | syl3anc 1373 | . . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐵 prefix (𝑁 − 𝐿))‘(𝐾 − (𝐿 − 𝑀))) = (𝐵‘(𝐾 − (𝐿 − 𝑀)))) | 
| 110 | 6 | zcnd 12723 | . . . . . . . . . 10
⊢ (𝐾 ∈ (0..^(𝑁 − 𝑀)) → 𝐾 ∈ ℂ) | 
| 111 | 110 | ad2antrl 728 | . . . . . . . . 9
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ℂ) | 
| 112 | 55 | zcnd 12723 | . . . . . . . . . . . 12
⊢ (𝑀 ∈ (0...𝐿) → 𝐿 ∈ ℂ) | 
| 113 | 112 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ ℂ) | 
| 114 | 113 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐿 ∈ ℂ) | 
| 115 |  | elfzelz 13564 | . . . . . . . . . . . . 13
⊢ (𝑀 ∈ (0...𝐿) → 𝑀 ∈ ℤ) | 
| 116 | 115 | zcnd 12723 | . . . . . . . . . . . 12
⊢ (𝑀 ∈ (0...𝐿) → 𝑀 ∈ ℂ) | 
| 117 | 116 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ ℂ) | 
| 118 | 117 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝑀 ∈ ℂ) | 
| 119 | 114, 118 | subcld 11620 | . . . . . . . . 9
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐿 − 𝑀) ∈ ℂ) | 
| 120 | 111, 119 | subcld 11620 | . . . . . . . 8
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 − (𝐿 − 𝑀)) ∈ ℂ) | 
| 121 | 120 | addridd 11461 | . . . . . . 7
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐾 − (𝐿 − 𝑀)) + 0) = (𝐾 − (𝐿 − 𝑀))) | 
| 122 | 121 | eqcomd 2743 | . . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 − (𝐿 − 𝑀)) = ((𝐾 − (𝐿 − 𝑀)) + 0)) | 
| 123 | 122 | fveq2d 6910 | . . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐵‘(𝐾 − (𝐿 − 𝑀))) = (𝐵‘((𝐾 − (𝐿 − 𝑀)) + 0))) | 
| 124 | 109, 123 | eqtrd 2777 | . . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐵 prefix (𝑁 − 𝐿))‘(𝐾 − (𝐿 − 𝑀))) = (𝐵‘((𝐾 − (𝐿 − 𝑀)) + 0))) | 
| 125 | 36, 51, 124 | 3eqtr4d 2787 | . . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = ((𝐵 prefix (𝑁 − 𝐿))‘(𝐾 − (𝐿 − 𝑀)))) | 
| 126 |  | simpll 767 | . . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐴 ∈ Word 𝑉) | 
| 127 |  | simprl 771 | . . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ (0...𝐿)) | 
| 128 |  | lencl 14571 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈
ℕ0) | 
| 129 |  | elnn0uz 12923 | . . . . . . . . . . . . . 14
⊢
((♯‘𝐴)
∈ ℕ0 ↔ (♯‘𝐴) ∈
(ℤ≥‘0)) | 
| 130 |  | eluzfz2 13572 | . . . . . . . . . . . . . 14
⊢
((♯‘𝐴)
∈ (ℤ≥‘0) → (♯‘𝐴) ∈ (0...(♯‘𝐴))) | 
| 131 | 129, 130 | sylbi 217 | . . . . . . . . . . . . 13
⊢
((♯‘𝐴)
∈ ℕ0 → (♯‘𝐴) ∈ (0...(♯‘𝐴))) | 
| 132 | 1, 131 | eqeltrid 2845 | . . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ ℕ0 → 𝐿 ∈ (0...(♯‘𝐴))) | 
| 133 | 128, 132 | syl 17 | . . . . . . . . . . 11
⊢ (𝐴 ∈ Word 𝑉 → 𝐿 ∈ (0...(♯‘𝐴))) | 
| 134 | 133 | adantr 480 | . . . . . . . . . 10
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → 𝐿 ∈ (0...(♯‘𝐴))) | 
| 135 | 134 | adantr 480 | . . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ (0...(♯‘𝐴))) | 
| 136 | 126, 127,
135 | 3jca 1129 | . . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴)))) | 
| 137 | 136 | adantr 480 | . . . . . . 7
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴)))) | 
| 138 |  | swrdlen 14685 | . . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))) → (♯‘(𝐴 substr 〈𝑀, 𝐿〉)) = (𝐿 − 𝑀)) | 
| 139 | 137, 138 | syl 17 | . . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (♯‘(𝐴 substr 〈𝑀, 𝐿〉)) = (𝐿 − 𝑀)) | 
| 140 | 139 | eqcomd 2743 | . . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐿 − 𝑀) = (♯‘(𝐴 substr 〈𝑀, 𝐿〉))) | 
| 141 | 140 | oveq2d 7447 | . . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 − (𝐿 − 𝑀)) = (𝐾 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉)))) | 
| 142 | 141 | fveq2d 6910 | . . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐵 prefix (𝑁 − 𝐿))‘(𝐾 − (𝐿 − 𝑀))) = ((𝐵 prefix (𝑁 − 𝐿))‘(𝐾 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉))))) | 
| 143 | 5, 125, 142 | 3eqtrd 2781 | . 2
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐵 prefix (𝑁 − 𝐿))‘(𝐾 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉))))) | 
| 144 | 143 | ex 412 | 1
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐵 prefix (𝑁 − 𝐿))‘(𝐾 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉)))))) |