MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem2 Structured version   Visualization version   GIF version

Theorem pfxccatin12lem2 14681
Description: Lemma 2 for pfxccatin12 14683. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
pfxccatin12lem2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))

Proof of Theorem pfxccatin12lem2
StepHypRef Expression
1 swrdccatin2.l . . . . 5 𝐿 = (♯‘𝐴)
21pfxccatin12lem2c 14680 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
3 simprl 770 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ (0..^(𝑁𝑀)))
4 swrdfv 14598 . . . 4 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝐾 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
52, 3, 4syl2an2r 684 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
6 elfzoelz 13632 . . . . . . . 8 (𝐾 ∈ (0..^(𝑁𝑀)) → 𝐾 ∈ ℤ)
7 elfz2nn0 13592 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
8 nn0cn 12482 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
9 nn0cn 12482 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
108, 9anim12i 614 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
11 zcn 12563 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
12 subcl 11459 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1312ancoms 460 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1413anim1ci 617 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 ∈ ℂ ∧ (𝐿𝑀) ∈ ℂ))
15 subcl 11459 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ (𝐿𝑀) ∈ ℂ) → (𝐾 − (𝐿𝑀)) ∈ ℂ)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿𝑀)) ∈ ℂ)
1716addridd 11414 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 − (𝐿𝑀)) + 0) = (𝐾 − (𝐿𝑀)))
18 simpr 486 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐾 ∈ ℂ)
19 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐿 ∈ ℂ)
20 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝑀 ∈ ℂ)
2118, 19, 20subsub3d 11601 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿𝑀)) = ((𝐾 + 𝑀) − 𝐿))
2217, 21eqtr2d 2774 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0))
2310, 11, 22syl2an 597 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0))
24 oveq2 7417 . . . . . . . . . . . . . . . 16 ((♯‘𝐴) = 𝐿 → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 + 𝑀) − 𝐿))
2524eqcoms 2741 . . . . . . . . . . . . . . 15 (𝐿 = (♯‘𝐴) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 + 𝑀) − 𝐿))
2625eqeq1d 2735 . . . . . . . . . . . . . 14 (𝐿 = (♯‘𝐴) → (((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0) ↔ ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0)))
2723, 26imbitrrid 245 . . . . . . . . . . . . 13 (𝐿 = (♯‘𝐴) → (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
281, 27ax-mp 5 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0))
2928ex 414 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
30293adant3 1133 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
317, 30sylbi 216 . . . . . . . . 9 (𝑀 ∈ (0...𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3231ad2antrl 727 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
336, 32syl5com 31 . . . . . . 7 (𝐾 ∈ (0..^(𝑁𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3433adantr 482 . . . . . 6 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3534impcom 409 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0))
3635fveq2d 6896 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
37 simpll 766 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
38 pfxccatin12lem2a 14677 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))))
3938adantl 483 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))))
4039imp 408 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))
41 id 22 . . . . . . . . . . 11 ((♯‘𝐴) = 𝐿 → (♯‘𝐴) = 𝐿)
42 oveq1 7416 . . . . . . . . . . 11 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵)))
4341, 42oveq12d 7427 . . . . . . . . . 10 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) = (𝐿..^(𝐿 + (♯‘𝐵))))
4443eleq2d 2820 . . . . . . . . 9 ((♯‘𝐴) = 𝐿 → ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))))
4544eqcoms 2741 . . . . . . . 8 (𝐿 = (♯‘𝐴) → ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))))
461, 45ax-mp 5 . . . . . . 7 ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))
4740, 46sylibr 233 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
48 df-3an 1090 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
4937, 47, 48sylanbrc 584 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
50 ccatval2 14528 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴))))
5149, 50syl 17 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴))))
52 simplr 768 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐵 ∈ Word 𝑉)
5352adantr 482 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐵 ∈ Word 𝑉)
54 lencl 14483 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
55 elfzel2 13499 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝐿) → 𝐿 ∈ ℤ)
56 zsubcl 12604 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
5756ancoms 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
5857adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℤ)
59 zre 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
60 zre 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
61 subge0 11727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
6259, 60, 61syl2anr 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
6362biimprd 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 → 0 ≤ (𝑁𝐿)))
6463imp 408 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → 0 ≤ (𝑁𝐿))
65 elnn0z 12571 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁𝐿) ∈ ℕ0 ↔ ((𝑁𝐿) ∈ ℤ ∧ 0 ≤ (𝑁𝐿)))
6658, 64, 65sylanbrc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℕ0)
6766expcom 415 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿𝑁 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℕ0))
6867adantr 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℕ0))
6968expcomd 418 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝑁 ∈ ℤ → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
7069com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
71703ad2ant3 1136 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
7271imp 408 . . . . . . . . . . . . . . . . . . . 20 (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0))
7372com12 32 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ ℕ0))
7473adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ ℕ0))
7574imp 408 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ∈ ℕ0)
76 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (♯‘𝐵) ∈ ℕ0)
77593ad2ant3 1136 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
7877adantl 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
7960adantr 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → 𝐿 ∈ ℝ)
8079adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐿 ∈ ℝ)
81 nn0re 12481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℝ)
8281adantl 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (♯‘𝐵) ∈ ℝ)
8382adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝐵) ∈ ℝ)
84 lesubadd2 11687 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((𝑁𝐿) ≤ (♯‘𝐵) ↔ 𝑁 ≤ (𝐿 + (♯‘𝐵))))
8584biimprd 247 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → (𝑁 ≤ (𝐿 + (♯‘𝐵)) → (𝑁𝐿) ≤ (♯‘𝐵)))
8678, 80, 83, 85syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ≤ (𝐿 + (♯‘𝐵)) → (𝑁𝐿) ≤ (♯‘𝐵)))
8786ex 414 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ (𝐿 + (♯‘𝐵)) → (𝑁𝐿) ≤ (♯‘𝐵))))
8887com13 88 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ≤ (𝐿 + (♯‘𝐵)) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (♯‘𝐵))))
8988adantl 483 . . . . . . . . . . . . . . . . . . 19 ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (♯‘𝐵))))
9089impcom 409 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (♯‘𝐵)))
9190impcom 409 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ≤ (♯‘𝐵))
9275, 76, 913jca 1129 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))) → ((𝑁𝐿) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (♯‘𝐵)))
9392ex 414 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))) → ((𝑁𝐿) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (♯‘𝐵))))
94 elfz2 13491 . . . . . . . . . . . . . . 15 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))))
95 elfz2nn0 13592 . . . . . . . . . . . . . . 15 ((𝑁𝐿) ∈ (0...(♯‘𝐵)) ↔ ((𝑁𝐿) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (♯‘𝐵)))
9693, 94, 953imtr4g 296 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁𝐿) ∈ (0...(♯‘𝐵))))
9796ex 414 . . . . . . . . . . . . 13 (𝐿 ∈ ℤ → ((♯‘𝐵) ∈ ℕ0 → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))))
9897com23 86 . . . . . . . . . . . 12 (𝐿 ∈ ℤ → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((♯‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(♯‘𝐵)))))
9955, 98syl 17 . . . . . . . . . . 11 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((♯‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(♯‘𝐵)))))
10099imp 408 . . . . . . . . . 10 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(♯‘𝐵))))
10154, 100syl5com 31 . . . . . . . . 9 (𝐵 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵))))
102101adantl 483 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵))))
103102imp 408 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
104103adantr 482 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
105 pfxccatin12lem1 14678 . . . . . . . 8 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
106105adantl 483 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
107106imp 408 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿)))
108 pfxfv 14632 . . . . . 6 ((𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵)) ∧ (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = (𝐵‘(𝐾 − (𝐿𝑀))))
10953, 104, 107, 108syl3anc 1372 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = (𝐵‘(𝐾 − (𝐿𝑀))))
1106zcnd 12667 . . . . . . . . . 10 (𝐾 ∈ (0..^(𝑁𝑀)) → 𝐾 ∈ ℂ)
111110ad2antrl 727 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ ℂ)
11255zcnd 12667 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝐿) → 𝐿 ∈ ℂ)
113112ad2antrl 727 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ ℂ)
114113adantr 482 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐿 ∈ ℂ)
115 elfzelz 13501 . . . . . . . . . . . . 13 (𝑀 ∈ (0...𝐿) → 𝑀 ∈ ℤ)
116115zcnd 12667 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝐿) → 𝑀 ∈ ℂ)
117116ad2antrl 727 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ ℂ)
118117adantr 482 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝑀 ∈ ℂ)
119114, 118subcld 11571 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐿𝑀) ∈ ℂ)
120111, 119subcld 11571 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) ∈ ℂ)
121120addridd 11414 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐾 − (𝐿𝑀)) + 0) = (𝐾 − (𝐿𝑀)))
122121eqcomd 2739 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) = ((𝐾 − (𝐿𝑀)) + 0))
123122fveq2d 6896 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐵‘(𝐾 − (𝐿𝑀))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
124109, 123eqtrd 2773 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
12536, 51, 1243eqtr4d 2783 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))))
126 simpll 766 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐴 ∈ Word 𝑉)
127 simprl 770 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ (0...𝐿))
128 lencl 14483 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
129 elnn0uz 12867 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (ℤ‘0))
130 eluzfz2 13509 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ (ℤ‘0) → (♯‘𝐴) ∈ (0...(♯‘𝐴)))
131129, 130sylbi 216 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ (0...(♯‘𝐴)))
1321, 131eqeltrid 2838 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ (0...(♯‘𝐴)))
133128, 132syl 17 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝐴)))
134133adantr 482 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ (0...(♯‘𝐴)))
135134adantr 482 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ (0...(♯‘𝐴)))
136126, 127, 1353jca 1129 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))))
137136adantr 482 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))))
138 swrdlen 14597 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))) → (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
139137, 138syl 17 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
140139eqcomd 2739 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐿𝑀) = (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))
141140oveq2d 7425 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) = (𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))
142141fveq2d 6896 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
1435, 125, 1423eqtrd 2777 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
144143ex 414 1 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cop 4635   class class class wbr 5149  cfv 6544  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110   + caddc 11113  cle 11249  cmin 11444  0cn0 12472  cz 12558  cuz 12822  ...cfz 13484  ..^cfzo 13627  chash 14290  Word cword 14464   ++ cconcat 14520   substr csubstr 14590   prefix cpfx 14620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-concat 14521  df-substr 14591  df-pfx 14621
This theorem is referenced by:  pfxccatin12  14683
  Copyright terms: Public domain W3C validator