MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chcoeffeqlem Structured version   Visualization version   GIF version

Theorem chcoeffeqlem 22891
Description: Lemma for chcoeffeq 22892. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
chcoeffeq.a 𝐴 = (𝑁 Mat 𝑅)
chcoeffeq.b 𝐵 = (Base‘𝐴)
chcoeffeq.p 𝑃 = (Poly1𝑅)
chcoeffeq.y 𝑌 = (𝑁 Mat 𝑃)
chcoeffeq.r × = (.r𝑌)
chcoeffeq.s = (-g𝑌)
chcoeffeq.0 0 = (0g𝑌)
chcoeffeq.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chcoeffeq.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chcoeffeq.k 𝐾 = (𝐶𝑀)
chcoeffeq.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chcoeffeq.w 𝑊 = (Base‘𝑌)
chcoeffeq.1 1 = (1r𝐴)
chcoeffeq.m = ( ·𝑠𝐴)
chcoeffeq.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
chcoeffeqlem (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑈,𝑛   𝑛,𝑌   1 ,𝑛   ,𝑛   𝑛,𝑏   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑠,𝑏)   𝐵(𝑠,𝑏)   𝐶(𝑛,𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   𝐺(𝑠,𝑏)   (𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑊(𝑛,𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑛,𝑠,𝑏)

Proof of Theorem chcoeffeqlem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 (Poly1𝐴) = (Poly1𝐴)
2 eqid 2737 . . . . 5 (var1𝐴) = (var1𝐴)
3 eqid 2737 . . . . 5 (.g‘(mulGrp‘(Poly1𝐴))) = (.g‘(mulGrp‘(Poly1𝐴)))
4 crngring 20242 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5 chcoeffeq.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
65matring 22449 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
74, 6sylan2 593 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
873adant3 1133 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ Ring)
98adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐴 ∈ Ring)
10 chcoeffeq.b . . . . 5 𝐵 = (Base‘𝐴)
11 eqid 2737 . . . . 5 ( ·𝑠 ‘(Poly1𝐴)) = ( ·𝑠 ‘(Poly1𝐴))
12 eqid 2737 . . . . 5 (0g𝐴) = (0g𝐴)
13 chcoeffeq.p . . . . . . . 8 𝑃 = (Poly1𝑅)
14 chcoeffeq.y . . . . . . . 8 𝑌 = (𝑁 Mat 𝑃)
15 chcoeffeq.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
16 chcoeffeq.r . . . . . . . 8 × = (.r𝑌)
17 chcoeffeq.s . . . . . . . 8 = (-g𝑌)
18 chcoeffeq.0 . . . . . . . 8 0 = (0g𝑌)
19 chcoeffeq.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
20 eqid 2737 . . . . . . . 8 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
21 eqid 2737 . . . . . . . 8 ( ·𝑠𝑌) = ( ·𝑠𝑌)
22 eqid 2737 . . . . . . . 8 (1r𝑌) = (1r𝑌)
23 eqid 2737 . . . . . . . 8 (var1𝑅) = (var1𝑅)
24 eqid 2737 . . . . . . . 8 (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) = (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))
25 eqid 2737 . . . . . . . 8 (𝑁 maAdju 𝑃) = (𝑁 maAdju 𝑃)
26 chcoeffeq.w . . . . . . . 8 𝑊 = (Base‘𝑌)
27 chcoeffeq.u . . . . . . . 8 𝑈 = (𝑁 cPolyMatToMat 𝑅)
285, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1, 2, 11, 3, 27cpmadumatpolylem1 22887 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) ∈ (𝐵m0))
2928anasss 466 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈𝐺) ∈ (𝐵m0))
305, 10, 13, 14, 16, 17, 18, 15, 19, 20chfacfisfcpmat 22861 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
314, 30syl3anl2 1415 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
3231adantr 480 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
33 fvco3 7008 . . . . . . . . . 10 ((𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅) ∧ 𝑙 ∈ ℕ0) → ((𝑈𝐺)‘𝑙) = (𝑈‘(𝐺𝑙)))
3433eqcomd 2743 . . . . . . . . 9 ((𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) = ((𝑈𝐺)‘𝑙))
3532, 34sylan 580 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) = ((𝑈𝐺)‘𝑙))
36 elmapi 8889 . . . . . . . . . 10 ((𝑈𝐺) ∈ (𝐵m0) → (𝑈𝐺):ℕ0𝐵)
3736adantl 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) → (𝑈𝐺):ℕ0𝐵)
3837ffvelcdmda 7104 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) ∧ 𝑙 ∈ ℕ0) → ((𝑈𝐺)‘𝑙) ∈ 𝐵)
3935, 38eqeltrd 2841 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) ∈ 𝐵)
4039ralrimiva 3146 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) ∈ 𝐵)
4129, 40mpdan 687 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) ∈ 𝐵)
424anim2i 617 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
43423adant3 1133 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
4443adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
455, 10, 20, 27cpm2mf 22758 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
4644, 45syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
47 fcompt 7153 . . . . . . 7 ((𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)) → (𝑈𝐺) = (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))))
4846, 31, 47syl2anc 584 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈𝐺) = (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))))
495, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1, 2, 11, 3, 27cpmadumatpolylem2 22888 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) finSupp (0g𝐴))
5049anasss 466 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈𝐺) finSupp (0g𝐴))
5148, 50eqbrtrrd 5167 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))) finSupp (0g𝐴))
52 simpll1 1213 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 𝑁 ∈ Fin)
5343ad2ant2 1135 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
5453ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 𝑅 ∈ Ring)
55 chcoeffeq.k . . . . . . . . . 10 𝐾 = (𝐶𝑀)
56 chcoeffeq.c . . . . . . . . . . 11 𝐶 = (𝑁 CharPlyMat 𝑅)
57 eqid 2737 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
5856, 5, 10, 13, 57chpmatply1 22838 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ (Base‘𝑃))
5955, 58eqeltrid 2845 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 ∈ (Base‘𝑃))
60 eqid 2737 . . . . . . . . . 10 (coe1𝐾) = (coe1𝐾)
61 eqid 2737 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
6260, 57, 13, 61coe1fvalcl 22214 . . . . . . . . 9 ((𝐾 ∈ (Base‘𝑃) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
6359, 62sylan 580 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
6463adantlr 715 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
65 chcoeffeq.1 . . . . . . . . . 10 1 = (1r𝐴)
6610, 65ringidcl 20262 . . . . . . . . 9 (𝐴 ∈ Ring → 1𝐵)
678, 66syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1𝐵)
6867ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 1𝐵)
69 chcoeffeq.m . . . . . . . 8 = ( ·𝑠𝐴)
7061, 5, 10, 69matvscl 22437 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (((coe1𝐾)‘𝑙) ∈ (Base‘𝑅) ∧ 1𝐵)) → (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
7152, 54, 64, 68, 70syl22anc 839 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
7271ralrimiva 3146 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑙 ∈ ℕ0 (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
73 nn0ex 12532 . . . . . . 7 0 ∈ V
7473a1i 11 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ℕ0 ∈ V)
755matlmod 22435 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
764, 75sylan2 593 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ LMod)
77763adant3 1133 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ LMod)
7877adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐴 ∈ LMod)
79 eqidd 2738 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (Scalar‘𝐴) = (Scalar‘𝐴))
80 fvexd 6921 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ V)
81 eqid 2737 . . . . . 6 (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴))
825matsca2 22426 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝐴))
83823adant3 1133 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 = (Scalar‘𝐴))
8483, 53eqeltrrd 2842 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝐴) ∈ Ring)
8583eqcomd 2743 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝐴) = 𝑅)
8685fveq2d 6910 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Poly1‘(Scalar‘𝐴)) = (Poly1𝑅))
8786, 13eqtr4di 2795 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Poly1‘(Scalar‘𝐴)) = 𝑃)
8887fveq2d 6910 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Poly1‘(Scalar‘𝐴))) = (Base‘𝑃))
8959, 88eleqtrrd 2844 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 ∈ (Base‘(Poly1‘(Scalar‘𝐴))))
90 eqid 2737 . . . . . . . . 9 (Poly1‘(Scalar‘𝐴)) = (Poly1‘(Scalar‘𝐴))
91 eqid 2737 . . . . . . . . 9 (Base‘(Poly1‘(Scalar‘𝐴))) = (Base‘(Poly1‘(Scalar‘𝐴)))
9290, 91, 81mptcoe1fsupp 22217 . . . . . . . 8 (((Scalar‘𝐴) ∈ Ring ∧ 𝐾 ∈ (Base‘(Poly1‘(Scalar‘𝐴)))) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9384, 89, 92syl2anc 584 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9493adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9574, 78, 79, 10, 80, 68, 12, 81, 69, 94mptscmfsupp0 20925 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑙) 1 )) finSupp (0g𝐴))
96 2fveq3 6911 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑈‘(𝐺𝑛)) = (𝑈‘(𝐺𝑙)))
97 oveq1 7438 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)) = (𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))
9896, 97oveq12d 7449 . . . . . . . 8 (𝑛 = 𝑙 → ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))) = ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
9998cbvmptv 5255 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))) = (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
10099oveq2i 7442 . . . . . 6 ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))
101100a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
102 fveq2 6906 . . . . . . . . . 10 (𝑛 = 𝑙 → ((coe1𝐾)‘𝑛) = ((coe1𝐾)‘𝑙))
103102oveq1d 7446 . . . . . . . . 9 (𝑛 = 𝑙 → (((coe1𝐾)‘𝑛) 1 ) = (((coe1𝐾)‘𝑙) 1 ))
104103, 97oveq12d 7449 . . . . . . . 8 (𝑛 = 𝑙 → ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))) = ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
105104cbvmptv 5255 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))) = (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
106105oveq2i 7442 . . . . . 6 ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))
107106a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
1081, 2, 3, 9, 10, 11, 12, 41, 51, 72, 95, 101, 107gsumply1eq 22313 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) ↔ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )))
109108biimpa 476 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ))
11096, 103eqeq12d 2753 . . . 4 (𝑛 = 𝑙 → ((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ↔ (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )))
111110cbvralvw 3237 . . 3 (∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ↔ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ))
112109, 111sylibr 234 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
113112ex 412 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  ifcif 4525   class class class wbr 5143  cmpt 5225  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cmin 11492  cn 12266  0cn0 12526  ...cfz 13547  Basecbs 17247  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484   Σg cgsu 17485  -gcsg 18953  .gcmg 19085  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231  LModclmod 20858  var1cv1 22177  Poly1cpl1 22178  coe1cco1 22179   Mat cmat 22411   maAdju cmadu 22638   ConstPolyMat ccpmat 22709   matToPolyMat cmat2pmat 22710   cPolyMatToMat ccpmat2mat 22711   CharPlyMat cchpmat 22832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-splice 14788  df-reverse 14797  df-s2 14887  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-efmnd 18882  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-gim 19277  df-cntz 19335  df-oppg 19364  df-symg 19387  df-pmtr 19460  df-psgn 19509  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-dsmm 21752  df-frlm 21767  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-mamu 22395  df-mat 22412  df-mdet 22591  df-cpmat 22712  df-mat2pmat 22713  df-cpmat2mat 22714  df-chpmat 22833
This theorem is referenced by:  chcoeffeq  22892
  Copyright terms: Public domain W3C validator