MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chcoeffeqlem Structured version   Visualization version   GIF version

Theorem chcoeffeqlem 22831
Description: Lemma for chcoeffeq 22832. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
chcoeffeq.a 𝐴 = (𝑁 Mat 𝑅)
chcoeffeq.b 𝐵 = (Base‘𝐴)
chcoeffeq.p 𝑃 = (Poly1𝑅)
chcoeffeq.y 𝑌 = (𝑁 Mat 𝑃)
chcoeffeq.r × = (.r𝑌)
chcoeffeq.s = (-g𝑌)
chcoeffeq.0 0 = (0g𝑌)
chcoeffeq.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chcoeffeq.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chcoeffeq.k 𝐾 = (𝐶𝑀)
chcoeffeq.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chcoeffeq.w 𝑊 = (Base‘𝑌)
chcoeffeq.1 1 = (1r𝐴)
chcoeffeq.m = ( ·𝑠𝐴)
chcoeffeq.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
chcoeffeqlem (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑈,𝑛   𝑛,𝑌   1 ,𝑛   ,𝑛   𝑛,𝑏   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑠,𝑏)   𝐵(𝑠,𝑏)   𝐶(𝑛,𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   𝐺(𝑠,𝑏)   (𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑊(𝑛,𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑛,𝑠,𝑏)

Proof of Theorem chcoeffeqlem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . 5 (Poly1𝐴) = (Poly1𝐴)
2 eqid 2725 . . . . 5 (var1𝐴) = (var1𝐴)
3 eqid 2725 . . . . 5 (.g‘(mulGrp‘(Poly1𝐴))) = (.g‘(mulGrp‘(Poly1𝐴)))
4 crngring 20197 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5 chcoeffeq.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
65matring 22389 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
74, 6sylan2 591 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
873adant3 1129 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ Ring)
98adantr 479 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐴 ∈ Ring)
10 chcoeffeq.b . . . . 5 𝐵 = (Base‘𝐴)
11 eqid 2725 . . . . 5 ( ·𝑠 ‘(Poly1𝐴)) = ( ·𝑠 ‘(Poly1𝐴))
12 eqid 2725 . . . . 5 (0g𝐴) = (0g𝐴)
13 chcoeffeq.p . . . . . . . 8 𝑃 = (Poly1𝑅)
14 chcoeffeq.y . . . . . . . 8 𝑌 = (𝑁 Mat 𝑃)
15 chcoeffeq.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
16 chcoeffeq.r . . . . . . . 8 × = (.r𝑌)
17 chcoeffeq.s . . . . . . . 8 = (-g𝑌)
18 chcoeffeq.0 . . . . . . . 8 0 = (0g𝑌)
19 chcoeffeq.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
20 eqid 2725 . . . . . . . 8 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
21 eqid 2725 . . . . . . . 8 ( ·𝑠𝑌) = ( ·𝑠𝑌)
22 eqid 2725 . . . . . . . 8 (1r𝑌) = (1r𝑌)
23 eqid 2725 . . . . . . . 8 (var1𝑅) = (var1𝑅)
24 eqid 2725 . . . . . . . 8 (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) = (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))
25 eqid 2725 . . . . . . . 8 (𝑁 maAdju 𝑃) = (𝑁 maAdju 𝑃)
26 chcoeffeq.w . . . . . . . 8 𝑊 = (Base‘𝑌)
27 chcoeffeq.u . . . . . . . 8 𝑈 = (𝑁 cPolyMatToMat 𝑅)
285, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1, 2, 11, 3, 27cpmadumatpolylem1 22827 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) ∈ (𝐵m0))
2928anasss 465 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈𝐺) ∈ (𝐵m0))
305, 10, 13, 14, 16, 17, 18, 15, 19, 20chfacfisfcpmat 22801 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
314, 30syl3anl2 1410 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
3231adantr 479 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
33 fvco3 6996 . . . . . . . . . 10 ((𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅) ∧ 𝑙 ∈ ℕ0) → ((𝑈𝐺)‘𝑙) = (𝑈‘(𝐺𝑙)))
3433eqcomd 2731 . . . . . . . . 9 ((𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) = ((𝑈𝐺)‘𝑙))
3532, 34sylan 578 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) = ((𝑈𝐺)‘𝑙))
36 elmapi 8868 . . . . . . . . . 10 ((𝑈𝐺) ∈ (𝐵m0) → (𝑈𝐺):ℕ0𝐵)
3736adantl 480 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) → (𝑈𝐺):ℕ0𝐵)
3837ffvelcdmda 7093 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) ∧ 𝑙 ∈ ℕ0) → ((𝑈𝐺)‘𝑙) ∈ 𝐵)
3935, 38eqeltrd 2825 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) ∈ 𝐵)
4039ralrimiva 3135 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) ∈ 𝐵)
4129, 40mpdan 685 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) ∈ 𝐵)
424anim2i 615 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
43423adant3 1129 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
4443adantr 479 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
455, 10, 20, 27cpm2mf 22698 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
4644, 45syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
47 fcompt 7142 . . . . . . 7 ((𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)) → (𝑈𝐺) = (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))))
4846, 31, 47syl2anc 582 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈𝐺) = (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))))
495, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1, 2, 11, 3, 27cpmadumatpolylem2 22828 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) finSupp (0g𝐴))
5049anasss 465 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈𝐺) finSupp (0g𝐴))
5148, 50eqbrtrrd 5173 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))) finSupp (0g𝐴))
52 simpll1 1209 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 𝑁 ∈ Fin)
5343ad2ant2 1131 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
5453ad2antrr 724 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 𝑅 ∈ Ring)
55 chcoeffeq.k . . . . . . . . . 10 𝐾 = (𝐶𝑀)
56 chcoeffeq.c . . . . . . . . . . 11 𝐶 = (𝑁 CharPlyMat 𝑅)
57 eqid 2725 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
5856, 5, 10, 13, 57chpmatply1 22778 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ (Base‘𝑃))
5955, 58eqeltrid 2829 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 ∈ (Base‘𝑃))
60 eqid 2725 . . . . . . . . . 10 (coe1𝐾) = (coe1𝐾)
61 eqid 2725 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
6260, 57, 13, 61coe1fvalcl 22155 . . . . . . . . 9 ((𝐾 ∈ (Base‘𝑃) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
6359, 62sylan 578 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
6463adantlr 713 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
65 chcoeffeq.1 . . . . . . . . . 10 1 = (1r𝐴)
6610, 65ringidcl 20214 . . . . . . . . 9 (𝐴 ∈ Ring → 1𝐵)
678, 66syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1𝐵)
6867ad2antrr 724 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 1𝐵)
69 chcoeffeq.m . . . . . . . 8 = ( ·𝑠𝐴)
7061, 5, 10, 69matvscl 22377 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (((coe1𝐾)‘𝑙) ∈ (Base‘𝑅) ∧ 1𝐵)) → (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
7152, 54, 64, 68, 70syl22anc 837 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
7271ralrimiva 3135 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑙 ∈ ℕ0 (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
73 nn0ex 12511 . . . . . . 7 0 ∈ V
7473a1i 11 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ℕ0 ∈ V)
755matlmod 22375 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
764, 75sylan2 591 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ LMod)
77763adant3 1129 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ LMod)
7877adantr 479 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐴 ∈ LMod)
79 eqidd 2726 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (Scalar‘𝐴) = (Scalar‘𝐴))
80 fvexd 6911 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ V)
81 eqid 2725 . . . . . 6 (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴))
825matsca2 22366 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝐴))
83823adant3 1129 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 = (Scalar‘𝐴))
8483, 53eqeltrrd 2826 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝐴) ∈ Ring)
8583eqcomd 2731 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝐴) = 𝑅)
8685fveq2d 6900 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Poly1‘(Scalar‘𝐴)) = (Poly1𝑅))
8786, 13eqtr4di 2783 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Poly1‘(Scalar‘𝐴)) = 𝑃)
8887fveq2d 6900 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Poly1‘(Scalar‘𝐴))) = (Base‘𝑃))
8959, 88eleqtrrd 2828 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 ∈ (Base‘(Poly1‘(Scalar‘𝐴))))
90 eqid 2725 . . . . . . . . 9 (Poly1‘(Scalar‘𝐴)) = (Poly1‘(Scalar‘𝐴))
91 eqid 2725 . . . . . . . . 9 (Base‘(Poly1‘(Scalar‘𝐴))) = (Base‘(Poly1‘(Scalar‘𝐴)))
9290, 91, 81mptcoe1fsupp 22158 . . . . . . . 8 (((Scalar‘𝐴) ∈ Ring ∧ 𝐾 ∈ (Base‘(Poly1‘(Scalar‘𝐴)))) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9384, 89, 92syl2anc 582 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9493adantr 479 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9574, 78, 79, 10, 80, 68, 12, 81, 69, 94mptscmfsupp0 20822 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑙) 1 )) finSupp (0g𝐴))
96 2fveq3 6901 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑈‘(𝐺𝑛)) = (𝑈‘(𝐺𝑙)))
97 oveq1 7426 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)) = (𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))
9896, 97oveq12d 7437 . . . . . . . 8 (𝑛 = 𝑙 → ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))) = ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
9998cbvmptv 5262 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))) = (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
10099oveq2i 7430 . . . . . 6 ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))
101100a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
102 fveq2 6896 . . . . . . . . . 10 (𝑛 = 𝑙 → ((coe1𝐾)‘𝑛) = ((coe1𝐾)‘𝑙))
103102oveq1d 7434 . . . . . . . . 9 (𝑛 = 𝑙 → (((coe1𝐾)‘𝑛) 1 ) = (((coe1𝐾)‘𝑙) 1 ))
104103, 97oveq12d 7437 . . . . . . . 8 (𝑛 = 𝑙 → ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))) = ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
105104cbvmptv 5262 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))) = (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
106105oveq2i 7430 . . . . . 6 ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))
107106a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
1081, 2, 3, 9, 10, 11, 12, 41, 51, 72, 95, 101, 107gsumply1eq 22253 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) ↔ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )))
109108biimpa 475 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ))
11096, 103eqeq12d 2741 . . . 4 (𝑛 = 𝑙 → ((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ↔ (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )))
111110cbvralvw 3224 . . 3 (∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ↔ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ))
112109, 111sylibr 233 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
113112ex 411 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  ifcif 4530   class class class wbr 5149  cmpt 5232  ccom 5682  wf 6545  cfv 6549  (class class class)co 7419  m cmap 8845  Fincfn 8964   finSupp cfsupp 9387  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cmin 11476  cn 12245  0cn0 12505  ...cfz 13519  Basecbs 17183  .rcmulr 17237  Scalarcsca 17239   ·𝑠 cvsca 17240  0gc0g 17424   Σg cgsu 17425  -gcsg 18900  .gcmg 19031  mulGrpcmgp 20086  1rcur 20133  Ringcrg 20185  CRingccrg 20186  LModclmod 20755  var1cv1 22118  Poly1cpl1 22119  coe1cco1 22120   Mat cmat 22351   maAdju cmadu 22578   ConstPolyMat ccpmat 22649   matToPolyMat cmat2pmat 22650   cPolyMatToMat ccpmat2mat 22651   CharPlyMat cchpmat 22772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-xnn0 12578  df-z 12592  df-dec 12711  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-word 14501  df-lsw 14549  df-concat 14557  df-s1 14582  df-substr 14627  df-pfx 14657  df-splice 14736  df-reverse 14745  df-s2 14835  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-efmnd 18829  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-ghm 19176  df-gim 19222  df-cntz 19280  df-oppg 19309  df-symg 19334  df-pmtr 19409  df-psgn 19458  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-srg 20139  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-rhm 20423  df-subrng 20495  df-subrg 20520  df-drng 20638  df-lmod 20757  df-lss 20828  df-sra 21070  df-rgmod 21071  df-cnfld 21297  df-zring 21390  df-zrh 21446  df-dsmm 21683  df-frlm 21698  df-ascl 21806  df-psr 21859  df-mvr 21860  df-mpl 21861  df-opsr 21863  df-psr1 22122  df-vr1 22123  df-ply1 22124  df-coe1 22125  df-mamu 22335  df-mat 22352  df-mdet 22531  df-cpmat 22652  df-mat2pmat 22653  df-cpmat2mat 22654  df-chpmat 22773
This theorem is referenced by:  chcoeffeq  22832
  Copyright terms: Public domain W3C validator