MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chcoeffeqlem Structured version   Visualization version   GIF version

Theorem chcoeffeqlem 22912
Description: Lemma for chcoeffeq 22913. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
chcoeffeq.a 𝐴 = (𝑁 Mat 𝑅)
chcoeffeq.b 𝐵 = (Base‘𝐴)
chcoeffeq.p 𝑃 = (Poly1𝑅)
chcoeffeq.y 𝑌 = (𝑁 Mat 𝑃)
chcoeffeq.r × = (.r𝑌)
chcoeffeq.s = (-g𝑌)
chcoeffeq.0 0 = (0g𝑌)
chcoeffeq.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chcoeffeq.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chcoeffeq.k 𝐾 = (𝐶𝑀)
chcoeffeq.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chcoeffeq.w 𝑊 = (Base‘𝑌)
chcoeffeq.1 1 = (1r𝐴)
chcoeffeq.m = ( ·𝑠𝐴)
chcoeffeq.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
chcoeffeqlem (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑈,𝑛   𝑛,𝑌   1 ,𝑛   ,𝑛   𝑛,𝑏   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑠,𝑏)   𝐵(𝑠,𝑏)   𝐶(𝑛,𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   𝐺(𝑠,𝑏)   (𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑊(𝑛,𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑛,𝑠,𝑏)

Proof of Theorem chcoeffeqlem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (Poly1𝐴) = (Poly1𝐴)
2 eqid 2740 . . . . 5 (var1𝐴) = (var1𝐴)
3 eqid 2740 . . . . 5 (.g‘(mulGrp‘(Poly1𝐴))) = (.g‘(mulGrp‘(Poly1𝐴)))
4 crngring 20272 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5 chcoeffeq.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
65matring 22470 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
74, 6sylan2 592 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
873adant3 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ Ring)
98adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐴 ∈ Ring)
10 chcoeffeq.b . . . . 5 𝐵 = (Base‘𝐴)
11 eqid 2740 . . . . 5 ( ·𝑠 ‘(Poly1𝐴)) = ( ·𝑠 ‘(Poly1𝐴))
12 eqid 2740 . . . . 5 (0g𝐴) = (0g𝐴)
13 chcoeffeq.p . . . . . . . 8 𝑃 = (Poly1𝑅)
14 chcoeffeq.y . . . . . . . 8 𝑌 = (𝑁 Mat 𝑃)
15 chcoeffeq.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
16 chcoeffeq.r . . . . . . . 8 × = (.r𝑌)
17 chcoeffeq.s . . . . . . . 8 = (-g𝑌)
18 chcoeffeq.0 . . . . . . . 8 0 = (0g𝑌)
19 chcoeffeq.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
20 eqid 2740 . . . . . . . 8 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
21 eqid 2740 . . . . . . . 8 ( ·𝑠𝑌) = ( ·𝑠𝑌)
22 eqid 2740 . . . . . . . 8 (1r𝑌) = (1r𝑌)
23 eqid 2740 . . . . . . . 8 (var1𝑅) = (var1𝑅)
24 eqid 2740 . . . . . . . 8 (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) = (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))
25 eqid 2740 . . . . . . . 8 (𝑁 maAdju 𝑃) = (𝑁 maAdju 𝑃)
26 chcoeffeq.w . . . . . . . 8 𝑊 = (Base‘𝑌)
27 chcoeffeq.u . . . . . . . 8 𝑈 = (𝑁 cPolyMatToMat 𝑅)
285, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1, 2, 11, 3, 27cpmadumatpolylem1 22908 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) ∈ (𝐵m0))
2928anasss 466 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈𝐺) ∈ (𝐵m0))
305, 10, 13, 14, 16, 17, 18, 15, 19, 20chfacfisfcpmat 22882 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
314, 30syl3anl2 1413 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
3231adantr 480 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
33 fvco3 7021 . . . . . . . . . 10 ((𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅) ∧ 𝑙 ∈ ℕ0) → ((𝑈𝐺)‘𝑙) = (𝑈‘(𝐺𝑙)))
3433eqcomd 2746 . . . . . . . . 9 ((𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) = ((𝑈𝐺)‘𝑙))
3532, 34sylan 579 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) = ((𝑈𝐺)‘𝑙))
36 elmapi 8907 . . . . . . . . . 10 ((𝑈𝐺) ∈ (𝐵m0) → (𝑈𝐺):ℕ0𝐵)
3736adantl 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) → (𝑈𝐺):ℕ0𝐵)
3837ffvelcdmda 7118 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) ∧ 𝑙 ∈ ℕ0) → ((𝑈𝐺)‘𝑙) ∈ 𝐵)
3935, 38eqeltrd 2844 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) ∈ 𝐵)
4039ralrimiva 3152 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵m0)) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) ∈ 𝐵)
4129, 40mpdan 686 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) ∈ 𝐵)
424anim2i 616 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
43423adant3 1132 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
4443adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
455, 10, 20, 27cpm2mf 22779 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
4644, 45syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
47 fcompt 7167 . . . . . . 7 ((𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)) → (𝑈𝐺) = (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))))
4846, 31, 47syl2anc 583 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈𝐺) = (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))))
495, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1, 2, 11, 3, 27cpmadumatpolylem2 22909 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈𝐺) finSupp (0g𝐴))
5049anasss 466 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑈𝐺) finSupp (0g𝐴))
5148, 50eqbrtrrd 5190 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))) finSupp (0g𝐴))
52 simpll1 1212 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 𝑁 ∈ Fin)
5343ad2ant2 1134 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
5453ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 𝑅 ∈ Ring)
55 chcoeffeq.k . . . . . . . . . 10 𝐾 = (𝐶𝑀)
56 chcoeffeq.c . . . . . . . . . . 11 𝐶 = (𝑁 CharPlyMat 𝑅)
57 eqid 2740 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
5856, 5, 10, 13, 57chpmatply1 22859 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ (Base‘𝑃))
5955, 58eqeltrid 2848 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 ∈ (Base‘𝑃))
60 eqid 2740 . . . . . . . . . 10 (coe1𝐾) = (coe1𝐾)
61 eqid 2740 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
6260, 57, 13, 61coe1fvalcl 22235 . . . . . . . . 9 ((𝐾 ∈ (Base‘𝑃) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
6359, 62sylan 579 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
6463adantlr 714 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
65 chcoeffeq.1 . . . . . . . . . 10 1 = (1r𝐴)
6610, 65ringidcl 20289 . . . . . . . . 9 (𝐴 ∈ Ring → 1𝐵)
678, 66syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1𝐵)
6867ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 1𝐵)
69 chcoeffeq.m . . . . . . . 8 = ( ·𝑠𝐴)
7061, 5, 10, 69matvscl 22458 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (((coe1𝐾)‘𝑙) ∈ (Base‘𝑅) ∧ 1𝐵)) → (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
7152, 54, 64, 68, 70syl22anc 838 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
7271ralrimiva 3152 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑙 ∈ ℕ0 (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
73 nn0ex 12559 . . . . . . 7 0 ∈ V
7473a1i 11 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ℕ0 ∈ V)
755matlmod 22456 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
764, 75sylan2 592 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ LMod)
77763adant3 1132 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ LMod)
7877adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐴 ∈ LMod)
79 eqidd 2741 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (Scalar‘𝐴) = (Scalar‘𝐴))
80 fvexd 6935 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ V)
81 eqid 2740 . . . . . 6 (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴))
825matsca2 22447 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝐴))
83823adant3 1132 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 = (Scalar‘𝐴))
8483, 53eqeltrrd 2845 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝐴) ∈ Ring)
8583eqcomd 2746 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝐴) = 𝑅)
8685fveq2d 6924 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Poly1‘(Scalar‘𝐴)) = (Poly1𝑅))
8786, 13eqtr4di 2798 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Poly1‘(Scalar‘𝐴)) = 𝑃)
8887fveq2d 6924 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Poly1‘(Scalar‘𝐴))) = (Base‘𝑃))
8959, 88eleqtrrd 2847 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 ∈ (Base‘(Poly1‘(Scalar‘𝐴))))
90 eqid 2740 . . . . . . . . 9 (Poly1‘(Scalar‘𝐴)) = (Poly1‘(Scalar‘𝐴))
91 eqid 2740 . . . . . . . . 9 (Base‘(Poly1‘(Scalar‘𝐴))) = (Base‘(Poly1‘(Scalar‘𝐴)))
9290, 91, 81mptcoe1fsupp 22238 . . . . . . . 8 (((Scalar‘𝐴) ∈ Ring ∧ 𝐾 ∈ (Base‘(Poly1‘(Scalar‘𝐴)))) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9384, 89, 92syl2anc 583 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9493adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9574, 78, 79, 10, 80, 68, 12, 81, 69, 94mptscmfsupp0 20947 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑙) 1 )) finSupp (0g𝐴))
96 2fveq3 6925 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑈‘(𝐺𝑛)) = (𝑈‘(𝐺𝑙)))
97 oveq1 7455 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)) = (𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))
9896, 97oveq12d 7466 . . . . . . . 8 (𝑛 = 𝑙 → ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))) = ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
9998cbvmptv 5279 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))) = (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
10099oveq2i 7459 . . . . . 6 ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))
101100a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
102 fveq2 6920 . . . . . . . . . 10 (𝑛 = 𝑙 → ((coe1𝐾)‘𝑛) = ((coe1𝐾)‘𝑙))
103102oveq1d 7463 . . . . . . . . 9 (𝑛 = 𝑙 → (((coe1𝐾)‘𝑛) 1 ) = (((coe1𝐾)‘𝑙) 1 ))
104103, 97oveq12d 7466 . . . . . . . 8 (𝑛 = 𝑙 → ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))) = ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
105104cbvmptv 5279 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))) = (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
106105oveq2i 7459 . . . . . 6 ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))
107106a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
1081, 2, 3, 9, 10, 11, 12, 41, 51, 72, 95, 101, 107gsumply1eq 22334 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) ↔ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )))
109108biimpa 476 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ))
11096, 103eqeq12d 2756 . . . 4 (𝑛 = 𝑙 → ((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ↔ (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )))
111110cbvralvw 3243 . . 3 (∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ↔ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ))
112109, 111sylibr 234 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
113112ex 412 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  ifcif 4548   class class class wbr 5166  cmpt 5249  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cmin 11520  cn 12293  0cn0 12553  ...cfz 13567  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  -gcsg 18975  .gcmg 19107  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261  LModclmod 20880  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200   Mat cmat 22432   maAdju cmadu 22659   ConstPolyMat ccpmat 22730   matToPolyMat cmat2pmat 22731   cPolyMatToMat ccpmat2mat 22732   CharPlyMat cchpmat 22853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-dsmm 21775  df-frlm 21790  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mamu 22416  df-mat 22433  df-mdet 22612  df-cpmat 22733  df-mat2pmat 22734  df-cpmat2mat 22735  df-chpmat 22854
This theorem is referenced by:  chcoeffeq  22913
  Copyright terms: Public domain W3C validator