MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chcoeffeqlem Structured version   Visualization version   GIF version

Theorem chcoeffeqlem 21182
Description: Lemma for chcoeffeq 21183. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
chcoeffeq.a 𝐴 = (𝑁 Mat 𝑅)
chcoeffeq.b 𝐵 = (Base‘𝐴)
chcoeffeq.p 𝑃 = (Poly1𝑅)
chcoeffeq.y 𝑌 = (𝑁 Mat 𝑃)
chcoeffeq.r × = (.r𝑌)
chcoeffeq.s = (-g𝑌)
chcoeffeq.0 0 = (0g𝑌)
chcoeffeq.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chcoeffeq.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chcoeffeq.k 𝐾 = (𝐶𝑀)
chcoeffeq.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chcoeffeq.w 𝑊 = (Base‘𝑌)
chcoeffeq.1 1 = (1r𝐴)
chcoeffeq.m = ( ·𝑠𝐴)
chcoeffeq.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
chcoeffeqlem (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑈,𝑛   𝑛,𝑌   1 ,𝑛   ,𝑛   𝑛,𝑏   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑠,𝑏)   𝐵(𝑠,𝑏)   𝐶(𝑛,𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   𝐺(𝑠,𝑏)   (𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑊(𝑛,𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑛,𝑠,𝑏)

Proof of Theorem chcoeffeqlem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 eqid 2795 . . . . 5 (Poly1𝐴) = (Poly1𝐴)
2 eqid 2795 . . . . 5 (var1𝐴) = (var1𝐴)
3 eqid 2795 . . . . 5 (.g‘(mulGrp‘(Poly1𝐴))) = (.g‘(mulGrp‘(Poly1𝐴)))
4 crngring 19003 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5 chcoeffeq.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
65matring 20741 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
74, 6sylan2 592 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
873adant3 1125 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ Ring)
98adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝐴 ∈ Ring)
10 chcoeffeq.b . . . . 5 𝐵 = (Base‘𝐴)
11 eqid 2795 . . . . 5 ( ·𝑠 ‘(Poly1𝐴)) = ( ·𝑠 ‘(Poly1𝐴))
12 eqid 2795 . . . . 5 (0g𝐴) = (0g𝐴)
13 chcoeffeq.p . . . . . . . 8 𝑃 = (Poly1𝑅)
14 chcoeffeq.y . . . . . . . 8 𝑌 = (𝑁 Mat 𝑃)
15 chcoeffeq.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
16 chcoeffeq.r . . . . . . . 8 × = (.r𝑌)
17 chcoeffeq.s . . . . . . . 8 = (-g𝑌)
18 chcoeffeq.0 . . . . . . . 8 0 = (0g𝑌)
19 chcoeffeq.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
20 eqid 2795 . . . . . . . 8 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
21 eqid 2795 . . . . . . . 8 ( ·𝑠𝑌) = ( ·𝑠𝑌)
22 eqid 2795 . . . . . . . 8 (1r𝑌) = (1r𝑌)
23 eqid 2795 . . . . . . . 8 (var1𝑅) = (var1𝑅)
24 eqid 2795 . . . . . . . 8 (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) = (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))
25 eqid 2795 . . . . . . . 8 (𝑁 maAdju 𝑃) = (𝑁 maAdju 𝑃)
26 chcoeffeq.w . . . . . . . 8 𝑊 = (Base‘𝑌)
27 chcoeffeq.u . . . . . . . 8 𝑈 = (𝑁 cPolyMatToMat 𝑅)
285, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1, 2, 11, 3, 27cpmadumatpolylem1 21178 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑈𝐺) ∈ (𝐵𝑚0))
2928anasss 467 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑈𝐺) ∈ (𝐵𝑚0))
305, 10, 13, 14, 16, 17, 18, 15, 19, 20chfacfisfcpmat 21152 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
314, 30syl3anl2 1406 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
3231adantr 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵𝑚0)) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
33 fvco3 6632 . . . . . . . . . 10 ((𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅) ∧ 𝑙 ∈ ℕ0) → ((𝑈𝐺)‘𝑙) = (𝑈‘(𝐺𝑙)))
3433eqcomd 2801 . . . . . . . . 9 ((𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) = ((𝑈𝐺)‘𝑙))
3532, 34sylan 580 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵𝑚0)) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) = ((𝑈𝐺)‘𝑙))
36 elmapi 8283 . . . . . . . . . 10 ((𝑈𝐺) ∈ (𝐵𝑚0) → (𝑈𝐺):ℕ0𝐵)
3736adantl 482 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵𝑚0)) → (𝑈𝐺):ℕ0𝐵)
3837ffvelrnda 6721 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵𝑚0)) ∧ 𝑙 ∈ ℕ0) → ((𝑈𝐺)‘𝑙) ∈ 𝐵)
3935, 38eqeltrd 2883 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵𝑚0)) ∧ 𝑙 ∈ ℕ0) → (𝑈‘(𝐺𝑙)) ∈ 𝐵)
4039ralrimiva 3149 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ (𝑈𝐺) ∈ (𝐵𝑚0)) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) ∈ 𝐵)
4129, 40mpdan 683 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) ∈ 𝐵)
424anim2i 616 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
43423adant3 1125 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
4443adantr 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
455, 10, 20, 27cpm2mf 21049 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
4644, 45syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
47 fcompt 6763 . . . . . . 7 ((𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)) → (𝑈𝐺) = (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))))
4846, 31, 47syl2anc 584 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑈𝐺) = (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))))
495, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1, 2, 11, 3, 27cpmadumatpolylem2 21179 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑈𝐺) finSupp (0g𝐴))
5049anasss 467 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑈𝐺) finSupp (0g𝐴))
5148, 50eqbrtrrd 4990 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ (𝑈‘(𝐺𝑙))) finSupp (0g𝐴))
52 simpll1 1205 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 𝑁 ∈ Fin)
5343ad2ant2 1127 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
5453ad2antrr 722 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 𝑅 ∈ Ring)
55 chcoeffeq.k . . . . . . . . . 10 𝐾 = (𝐶𝑀)
56 chcoeffeq.c . . . . . . . . . . 11 𝐶 = (𝑁 CharPlyMat 𝑅)
57 eqid 2795 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
5856, 5, 10, 13, 57chpmatply1 21129 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ (Base‘𝑃))
5955, 58syl5eqel 2887 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 ∈ (Base‘𝑃))
60 eqid 2795 . . . . . . . . . 10 (coe1𝐾) = (coe1𝐾)
61 eqid 2795 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
6260, 57, 13, 61coe1fvalcl 20068 . . . . . . . . 9 ((𝐾 ∈ (Base‘𝑃) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
6359, 62sylan 580 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
6463adantlr 711 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ (Base‘𝑅))
65 chcoeffeq.1 . . . . . . . . . 10 1 = (1r𝐴)
6610, 65ringidcl 19013 . . . . . . . . 9 (𝐴 ∈ Ring → 1𝐵)
678, 66syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1𝐵)
6867ad2antrr 722 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → 1𝐵)
69 chcoeffeq.m . . . . . . . 8 = ( ·𝑠𝐴)
7061, 5, 10, 69matvscl 20729 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (((coe1𝐾)‘𝑙) ∈ (Base‘𝑅) ∧ 1𝐵)) → (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
7152, 54, 64, 68, 70syl22anc 835 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
7271ralrimiva 3149 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ∀𝑙 ∈ ℕ0 (((coe1𝐾)‘𝑙) 1 ) ∈ 𝐵)
73 nn0ex 11756 . . . . . . 7 0 ∈ V
7473a1i 11 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ℕ0 ∈ V)
755matlmod 20727 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
764, 75sylan2 592 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ LMod)
77763adant3 1125 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ LMod)
7877adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝐴 ∈ LMod)
79 eqidd 2796 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (Scalar‘𝐴) = (Scalar‘𝐴))
80 fvexd 6558 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑙 ∈ ℕ0) → ((coe1𝐾)‘𝑙) ∈ V)
81 eqid 2795 . . . . . 6 (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴))
825matsca2 20718 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝐴))
83823adant3 1125 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 = (Scalar‘𝐴))
8483, 53eqeltrrd 2884 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝐴) ∈ Ring)
8583eqcomd 2801 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝐴) = 𝑅)
8685fveq2d 6547 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Poly1‘(Scalar‘𝐴)) = (Poly1𝑅))
8786, 13syl6eqr 2849 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Poly1‘(Scalar‘𝐴)) = 𝑃)
8887fveq2d 6547 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Poly1‘(Scalar‘𝐴))) = (Base‘𝑃))
8959, 88eleqtrrd 2886 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 ∈ (Base‘(Poly1‘(Scalar‘𝐴))))
90 eqid 2795 . . . . . . . . 9 (Poly1‘(Scalar‘𝐴)) = (Poly1‘(Scalar‘𝐴))
91 eqid 2795 . . . . . . . . 9 (Base‘(Poly1‘(Scalar‘𝐴))) = (Base‘(Poly1‘(Scalar‘𝐴)))
9290, 91, 81mptcoe1fsupp 20071 . . . . . . . 8 (((Scalar‘𝐴) ∈ Ring ∧ 𝐾 ∈ (Base‘(Poly1‘(Scalar‘𝐴)))) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9384, 89, 92syl2anc 584 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9493adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ ((coe1𝐾)‘𝑙)) finSupp (0g‘(Scalar‘𝐴)))
9574, 78, 79, 10, 80, 68, 12, 81, 69, 94mptscmfsupp0 19394 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑙 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑙) 1 )) finSupp (0g𝐴))
96 2fveq3 6548 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑈‘(𝐺𝑛)) = (𝑈‘(𝐺𝑙)))
97 oveq1 7028 . . . . . . . . 9 (𝑛 = 𝑙 → (𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)) = (𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))
9896, 97oveq12d 7039 . . . . . . . 8 (𝑛 = 𝑙 → ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))) = ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
9998cbvmptv 5066 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))) = (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
10099oveq2i 7032 . . . . . 6 ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))
101100a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑙))( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
102 fveq2 6543 . . . . . . . . . 10 (𝑛 = 𝑙 → ((coe1𝐾)‘𝑛) = ((coe1𝐾)‘𝑙))
103102oveq1d 7036 . . . . . . . . 9 (𝑛 = 𝑙 → (((coe1𝐾)‘𝑛) 1 ) = (((coe1𝐾)‘𝑙) 1 ))
104103, 97oveq12d 7039 . . . . . . . 8 (𝑛 = 𝑙 → ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))) = ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
105104cbvmptv 5066 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))) = (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))
106105oveq2i 7032 . . . . . 6 ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))
107106a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑙 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑙) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑙(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
1081, 2, 3, 9, 10, 11, 12, 41, 51, 72, 95, 101, 107gsumply1eq 20161 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) ↔ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )))
109108biimpa 477 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ))
11096, 103eqeq12d 2810 . . . 4 (𝑛 = 𝑙 → ((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ↔ (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )))
111110cbvralv 3403 . . 3 (∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ↔ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ))
112109, 111sylibr 235 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
113112ex 413 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  wral 3105  Vcvv 3437  ifcif 4385   class class class wbr 4966  cmpt 5045  ccom 5452  wf 6226  cfv 6230  (class class class)co 7021  𝑚 cmap 8261  Fincfn 8362   finSupp cfsupp 8684  0cc0 10388  1c1 10389   + caddc 10391   < clt 10526  cmin 10722  cn 11491  0cn0 11750  ...cfz 12747  Basecbs 16317  .rcmulr 16400  Scalarcsca 16402   ·𝑠 cvsca 16403  0gc0g 16547   Σg cgsu 16548  -gcsg 17868  .gcmg 17986  mulGrpcmgp 18934  1rcur 18946  Ringcrg 18992  CRingccrg 18993  LModclmod 19329  var1cv1 20032  Poly1cpl1 20033  coe1cco1 20034   Mat cmat 20705   maAdju cmadu 20930   ConstPolyMat ccpmat 21000   matToPolyMat cmat2pmat 21001   cPolyMatToMat ccpmat2mat 21002   CharPlyMat cchpmat 21123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-addf 10467  ax-mulf 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-xor 1497  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-ot 4485  df-uni 4750  df-int 4787  df-iun 4831  df-iin 4832  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-of 7272  df-ofr 7273  df-om 7442  df-1st 7550  df-2nd 7551  df-supp 7687  df-tpos 7748  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-oadd 7962  df-er 8144  df-map 8263  df-pm 8264  df-ixp 8316  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-fsupp 8685  df-sup 8757  df-oi 8825  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-7 11558  df-8 11559  df-9 11560  df-n0 11751  df-xnn0 11821  df-z 11835  df-dec 11953  df-uz 12099  df-rp 12245  df-fz 12748  df-fzo 12889  df-seq 13225  df-exp 13285  df-hash 13546  df-word 13713  df-lsw 13766  df-concat 13774  df-s1 13799  df-substr 13844  df-pfx 13874  df-splice 13953  df-reverse 13962  df-s2 14051  df-struct 16319  df-ndx 16320  df-slot 16321  df-base 16323  df-sets 16324  df-ress 16325  df-plusg 16412  df-mulr 16413  df-starv 16414  df-sca 16415  df-vsca 16416  df-ip 16417  df-tset 16418  df-ple 16419  df-ds 16421  df-unif 16422  df-hom 16423  df-cco 16424  df-0g 16549  df-gsum 16550  df-prds 16555  df-pws 16557  df-mre 16691  df-mrc 16692  df-acs 16694  df-mgm 17686  df-sgrp 17728  df-mnd 17739  df-mhm 17779  df-submnd 17780  df-grp 17869  df-minusg 17870  df-sbg 17871  df-mulg 17987  df-subg 18035  df-ghm 18102  df-gim 18145  df-cntz 18193  df-oppg 18220  df-symg 18242  df-pmtr 18306  df-psgn 18355  df-cmn 18640  df-abl 18641  df-mgp 18935  df-ur 18947  df-srg 18951  df-ring 18994  df-cring 18995  df-oppr 19068  df-dvdsr 19086  df-unit 19087  df-invr 19117  df-dvr 19128  df-rnghom 19162  df-drng 19199  df-subrg 19228  df-lmod 19331  df-lss 19399  df-sra 19639  df-rgmod 19640  df-ascl 19781  df-psr 19829  df-mvr 19830  df-mpl 19831  df-opsr 19833  df-psr1 20036  df-vr1 20037  df-ply1 20038  df-coe1 20039  df-cnfld 20233  df-zring 20305  df-zrh 20338  df-dsmm 20563  df-frlm 20578  df-mamu 20682  df-mat 20706  df-mdet 20883  df-cpmat 21003  df-mat2pmat 21004  df-cpmat2mat 21005  df-chpmat 21124
This theorem is referenced by:  chcoeffeq  21183
  Copyright terms: Public domain W3C validator