Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0resrnlem | Structured version Visualization version GIF version |
Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0resrnlem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0resrnlem.f | ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) |
sge0resrnlem.g | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
sge0resrnlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝐴) |
sge0resrnlem.f1o | ⊢ (𝜑 → (𝐺 ↾ 𝑋):𝑋–1-1-onto→ran 𝐺) |
Ref | Expression |
---|---|
sge0resrnlem | ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | fveq2 6756 | . . . 4 ⊢ (𝑦 = (𝐺‘𝑥) → (𝐹‘𝑦) = (𝐹‘(𝐺‘𝑥))) | |
4 | sge0resrnlem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝐴) | |
5 | sge0resrnlem.f1o | . . . 4 ⊢ (𝜑 → (𝐺 ↾ 𝑋):𝑋–1-1-onto→ran 𝐺) | |
6 | fvres 6775 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ((𝐺 ↾ 𝑋)‘𝑥) = (𝐺‘𝑥)) | |
7 | 6 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺 ↾ 𝑋)‘𝑥) = (𝐺‘𝑥)) |
8 | sge0resrnlem.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝐹:𝐵⟶(0[,]+∞)) |
10 | sge0resrnlem.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
11 | 10 | frnd 6592 | . . . . . . 7 ⊢ (𝜑 → ran 𝐺 ⊆ 𝐵) |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → ran 𝐺 ⊆ 𝐵) |
13 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ∈ ran 𝐺) | |
14 | 12, 13 | sseldd 3918 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ∈ 𝐵) |
15 | 9, 14 | ffvelrnd 6944 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
16 | 1, 2, 3, 4, 5, 7, 15 | sge0f1o 43810 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦))) = (Σ^‘(𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥))))) |
17 | 8, 11 | feqresmpt 6820 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ ran 𝐺) = (𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦))) |
18 | 17 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) = (Σ^‘(𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦)))) |
19 | fcompt 6987 | . . . . . . 7 ⊢ ((𝐹:𝐵⟶(0[,]+∞) ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥)))) | |
20 | 8, 10, 19 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥)))) |
21 | 20 | reseq1d 5879 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ↾ 𝑋) = ((𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥))) ↾ 𝑋)) |
22 | 4 | elpwid 4541 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
23 | 22 | resmptd 5937 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥))) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥)))) |
24 | 21, 23 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥)))) |
25 | 24 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋)) = (Σ^‘(𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥))))) |
26 | 16, 18, 25 | 3eqtr4d 2788 | . 2 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) = (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋))) |
27 | sge0resrnlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
28 | fco 6608 | . . . 4 ⊢ ((𝐹:𝐵⟶(0[,]+∞) ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶(0[,]+∞)) | |
29 | 8, 10, 28 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶(0[,]+∞)) |
30 | 27, 29 | sge0less 43820 | . 2 ⊢ (𝜑 → (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
31 | 26, 30 | eqbrtrd 5092 | 1 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 ∘ ccom 5584 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 ≤ cle 10941 [,]cicc 13011 Σ^csumge0 43790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-sumge0 43791 |
This theorem is referenced by: sge0resrn 43832 |
Copyright terms: Public domain | W3C validator |