| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0resrnlem | Structured version Visualization version GIF version | ||
| Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0resrnlem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0resrnlem.f | ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) |
| sge0resrnlem.g | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| sge0resrnlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝐴) |
| sge0resrnlem.f1o | ⊢ (𝜑 → (𝐺 ↾ 𝑋):𝑋–1-1-onto→ran 𝐺) |
| Ref | Expression |
|---|---|
| sge0resrnlem | ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | fveq2 6840 | . . . 4 ⊢ (𝑦 = (𝐺‘𝑥) → (𝐹‘𝑦) = (𝐹‘(𝐺‘𝑥))) | |
| 4 | sge0resrnlem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝐴) | |
| 5 | sge0resrnlem.f1o | . . . 4 ⊢ (𝜑 → (𝐺 ↾ 𝑋):𝑋–1-1-onto→ran 𝐺) | |
| 6 | fvres 6859 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ((𝐺 ↾ 𝑋)‘𝑥) = (𝐺‘𝑥)) | |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺 ↾ 𝑋)‘𝑥) = (𝐺‘𝑥)) |
| 8 | sge0resrnlem.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝐹:𝐵⟶(0[,]+∞)) |
| 10 | sge0resrnlem.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 11 | 10 | frnd 6678 | . . . . . . 7 ⊢ (𝜑 → ran 𝐺 ⊆ 𝐵) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → ran 𝐺 ⊆ 𝐵) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ∈ ran 𝐺) | |
| 14 | 12, 13 | sseldd 3944 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ∈ 𝐵) |
| 15 | 9, 14 | ffvelcdmd 7039 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
| 16 | 1, 2, 3, 4, 5, 7, 15 | sge0f1o 46353 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦))) = (Σ^‘(𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥))))) |
| 17 | 8, 11 | feqresmpt 6912 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ ran 𝐺) = (𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦))) |
| 18 | 17 | fveq2d 6844 | . . 3 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) = (Σ^‘(𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦)))) |
| 19 | fcompt 7087 | . . . . . . 7 ⊢ ((𝐹:𝐵⟶(0[,]+∞) ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥)))) | |
| 20 | 8, 10, 19 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥)))) |
| 21 | 20 | reseq1d 5938 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ↾ 𝑋) = ((𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥))) ↾ 𝑋)) |
| 22 | 4 | elpwid 4568 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
| 23 | 22 | resmptd 6000 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥))) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥)))) |
| 24 | 21, 23 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥)))) |
| 25 | 24 | fveq2d 6844 | . . 3 ⊢ (𝜑 → (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋)) = (Σ^‘(𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥))))) |
| 26 | 16, 18, 25 | 3eqtr4d 2774 | . 2 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) = (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋))) |
| 27 | sge0resrnlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 28 | fco 6694 | . . . 4 ⊢ ((𝐹:𝐵⟶(0[,]+∞) ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶(0[,]+∞)) | |
| 29 | 8, 10, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶(0[,]+∞)) |
| 30 | 27, 29 | sge0less 46363 | . 2 ⊢ (𝜑 → (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
| 31 | 26, 30 | eqbrtrd 5124 | 1 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 𝒫 cpw 4559 class class class wbr 5102 ↦ cmpt 5183 ran crn 5632 ↾ cres 5633 ∘ ccom 5635 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 0cc0 11044 +∞cpnf 11181 ≤ cle 11185 [,]cicc 13285 Σ^csumge0 46333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-sumge0 46334 |
| This theorem is referenced by: sge0resrn 46375 |
| Copyright terms: Public domain | W3C validator |