Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0resrnlem | Structured version Visualization version GIF version |
Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0resrnlem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0resrnlem.f | ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) |
sge0resrnlem.g | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
sge0resrnlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝐴) |
sge0resrnlem.f1o | ⊢ (𝜑 → (𝐺 ↾ 𝑋):𝑋–1-1-onto→ran 𝐺) |
Ref | Expression |
---|---|
sge0resrnlem | ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1921 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1921 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | fveq2 6674 | . . . 4 ⊢ (𝑦 = (𝐺‘𝑥) → (𝐹‘𝑦) = (𝐹‘(𝐺‘𝑥))) | |
4 | sge0resrnlem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝐴) | |
5 | sge0resrnlem.f1o | . . . 4 ⊢ (𝜑 → (𝐺 ↾ 𝑋):𝑋–1-1-onto→ran 𝐺) | |
6 | fvres 6693 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ((𝐺 ↾ 𝑋)‘𝑥) = (𝐺‘𝑥)) | |
7 | 6 | adantl 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺 ↾ 𝑋)‘𝑥) = (𝐺‘𝑥)) |
8 | sge0resrnlem.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) | |
9 | 8 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝐹:𝐵⟶(0[,]+∞)) |
10 | sge0resrnlem.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
11 | 10 | frnd 6512 | . . . . . . 7 ⊢ (𝜑 → ran 𝐺 ⊆ 𝐵) |
12 | 11 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → ran 𝐺 ⊆ 𝐵) |
13 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ∈ ran 𝐺) | |
14 | 12, 13 | sseldd 3878 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ∈ 𝐵) |
15 | 9, 14 | ffvelrnd 6862 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
16 | 1, 2, 3, 4, 5, 7, 15 | sge0f1o 43462 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦))) = (Σ^‘(𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥))))) |
17 | 8, 11 | feqresmpt 6738 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ ran 𝐺) = (𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦))) |
18 | 17 | fveq2d 6678 | . . 3 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) = (Σ^‘(𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦)))) |
19 | fcompt 6905 | . . . . . . 7 ⊢ ((𝐹:𝐵⟶(0[,]+∞) ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥)))) | |
20 | 8, 10, 19 | syl2anc 587 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥)))) |
21 | 20 | reseq1d 5824 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ↾ 𝑋) = ((𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥))) ↾ 𝑋)) |
22 | 4 | elpwid 4499 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
23 | 22 | resmptd 5882 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥))) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥)))) |
24 | 21, 23 | eqtrd 2773 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥)))) |
25 | 24 | fveq2d 6678 | . . 3 ⊢ (𝜑 → (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋)) = (Σ^‘(𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥))))) |
26 | 16, 18, 25 | 3eqtr4d 2783 | . 2 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) = (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋))) |
27 | sge0resrnlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
28 | fco 6528 | . . . 4 ⊢ ((𝐹:𝐵⟶(0[,]+∞) ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶(0[,]+∞)) | |
29 | 8, 10, 28 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶(0[,]+∞)) |
30 | 27, 29 | sge0less 43472 | . 2 ⊢ (𝜑 → (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
31 | 26, 30 | eqbrtrd 5052 | 1 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ⊆ wss 3843 𝒫 cpw 4488 class class class wbr 5030 ↦ cmpt 5110 ran crn 5526 ↾ cres 5527 ∘ ccom 5529 ⟶wf 6335 –1-1-onto→wf1o 6338 ‘cfv 6339 (class class class)co 7170 0cc0 10615 +∞cpnf 10750 ≤ cle 10754 [,]cicc 12824 Σ^csumge0 43442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-ico 12827 df-icc 12828 df-fz 12982 df-fzo 13125 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-sum 15136 df-sumge0 43443 |
This theorem is referenced by: sge0resrn 43484 |
Copyright terms: Public domain | W3C validator |