| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0resrnlem | Structured version Visualization version GIF version | ||
| Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0resrnlem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0resrnlem.f | ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) |
| sge0resrnlem.g | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| sge0resrnlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝐴) |
| sge0resrnlem.f1o | ⊢ (𝜑 → (𝐺 ↾ 𝑋):𝑋–1-1-onto→ran 𝐺) |
| Ref | Expression |
|---|---|
| sge0resrnlem | ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | fveq2 6861 | . . . 4 ⊢ (𝑦 = (𝐺‘𝑥) → (𝐹‘𝑦) = (𝐹‘(𝐺‘𝑥))) | |
| 4 | sge0resrnlem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝐴) | |
| 5 | sge0resrnlem.f1o | . . . 4 ⊢ (𝜑 → (𝐺 ↾ 𝑋):𝑋–1-1-onto→ran 𝐺) | |
| 6 | fvres 6880 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ((𝐺 ↾ 𝑋)‘𝑥) = (𝐺‘𝑥)) | |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺 ↾ 𝑋)‘𝑥) = (𝐺‘𝑥)) |
| 8 | sge0resrnlem.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝐹:𝐵⟶(0[,]+∞)) |
| 10 | sge0resrnlem.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 11 | 10 | frnd 6699 | . . . . . . 7 ⊢ (𝜑 → ran 𝐺 ⊆ 𝐵) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → ran 𝐺 ⊆ 𝐵) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ∈ ran 𝐺) | |
| 14 | 12, 13 | sseldd 3950 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ∈ 𝐵) |
| 15 | 9, 14 | ffvelcdmd 7060 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
| 16 | 1, 2, 3, 4, 5, 7, 15 | sge0f1o 46387 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦))) = (Σ^‘(𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥))))) |
| 17 | 8, 11 | feqresmpt 6933 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ ran 𝐺) = (𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦))) |
| 18 | 17 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) = (Σ^‘(𝑦 ∈ ran 𝐺 ↦ (𝐹‘𝑦)))) |
| 19 | fcompt 7108 | . . . . . . 7 ⊢ ((𝐹:𝐵⟶(0[,]+∞) ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥)))) | |
| 20 | 8, 10, 19 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥)))) |
| 21 | 20 | reseq1d 5952 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ↾ 𝑋) = ((𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥))) ↾ 𝑋)) |
| 22 | 4 | elpwid 4575 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
| 23 | 22 | resmptd 6014 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐹‘(𝐺‘𝑥))) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥)))) |
| 24 | 21, 23 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥)))) |
| 25 | 24 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋)) = (Σ^‘(𝑥 ∈ 𝑋 ↦ (𝐹‘(𝐺‘𝑥))))) |
| 26 | 16, 18, 25 | 3eqtr4d 2775 | . 2 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) = (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋))) |
| 27 | sge0resrnlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 28 | fco 6715 | . . . 4 ⊢ ((𝐹:𝐵⟶(0[,]+∞) ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶(0[,]+∞)) | |
| 29 | 8, 10, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶(0[,]+∞)) |
| 30 | 27, 29 | sge0less 46397 | . 2 ⊢ (𝜑 → (Σ^‘((𝐹 ∘ 𝐺) ↾ 𝑋)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
| 31 | 26, 30 | eqbrtrd 5132 | 1 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 class class class wbr 5110 ↦ cmpt 5191 ran crn 5642 ↾ cres 5643 ∘ ccom 5645 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 0cc0 11075 +∞cpnf 11212 ≤ cle 11216 [,]cicc 13316 Σ^csumge0 46367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-sumge0 46368 |
| This theorem is referenced by: sge0resrn 46409 |
| Copyright terms: Public domain | W3C validator |