Step | Hyp | Ref
| Expression |
1 | | smndex1ibas.g |
. . . . . . . 8
β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) |
2 | 1 | a1i 11 |
. . . . . . 7
β’ (πΎ β (0..^π) β πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π))) |
3 | | id 22 |
. . . . . . . . 9
β’ (π = πΎ β π = πΎ) |
4 | 3 | mpteq2dv 5249 |
. . . . . . . 8
β’ (π = πΎ β (π₯ β β0 β¦ π) = (π₯ β β0 β¦ πΎ)) |
5 | 4 | adantl 482 |
. . . . . . 7
β’ ((πΎ β (0..^π) β§ π = πΎ) β (π₯ β β0 β¦ π) = (π₯ β β0 β¦ πΎ)) |
6 | | id 22 |
. . . . . . 7
β’ (πΎ β (0..^π) β πΎ β (0..^π)) |
7 | | nn0ex 12474 |
. . . . . . . . 9
β’
β0 β V |
8 | 7 | mptex 7221 |
. . . . . . . 8
β’ (π₯ β β0
β¦ πΎ) β
V |
9 | 8 | a1i 11 |
. . . . . . 7
β’ (πΎ β (0..^π) β (π₯ β β0 β¦ πΎ) β V) |
10 | 2, 5, 6, 9 | fvmptd 7002 |
. . . . . 6
β’ (πΎ β (0..^π) β (πΊβπΎ) = (π₯ β β0 β¦ πΎ)) |
11 | 10 | adantl 482 |
. . . . 5
β’ ((πΉ β (Baseβπ) β§ πΎ β (0..^π)) β (πΊβπΎ) = (π₯ β β0 β¦ πΎ)) |
12 | 11 | adantr 481 |
. . . 4
β’ (((πΉ β (Baseβπ) β§ πΎ β (0..^π)) β§ π¦ β β0) β (πΊβπΎ) = (π₯ β β0 β¦ πΎ)) |
13 | | eqidd 2733 |
. . . 4
β’ ((((πΉ β (Baseβπ) β§ πΎ β (0..^π)) β§ π¦ β β0) β§ π₯ = (πΉβπ¦)) β πΎ = πΎ) |
14 | | smndex1ibas.m |
. . . . . . . 8
β’ π =
(EndoFMndββ0) |
15 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
16 | 14, 15 | efmndbasf 18752 |
. . . . . . 7
β’ (πΉ β (Baseβπ) β πΉ:β0βΆβ0) |
17 | | ffvelcdm 7080 |
. . . . . . . 8
β’ ((πΉ:β0βΆβ0
β§ π¦ β
β0) β (πΉβπ¦) β β0) |
18 | 17 | ex 413 |
. . . . . . 7
β’ (πΉ:β0βΆβ0
β (π¦ β
β0 β (πΉβπ¦) β β0)) |
19 | 16, 18 | syl 17 |
. . . . . 6
β’ (πΉ β (Baseβπ) β (π¦ β β0 β (πΉβπ¦) β
β0)) |
20 | 19 | adantr 481 |
. . . . 5
β’ ((πΉ β (Baseβπ) β§ πΎ β (0..^π)) β (π¦ β β0 β (πΉβπ¦) β
β0)) |
21 | 20 | imp 407 |
. . . 4
β’ (((πΉ β (Baseβπ) β§ πΎ β (0..^π)) β§ π¦ β β0) β (πΉβπ¦) β
β0) |
22 | | simplr 767 |
. . . 4
β’ (((πΉ β (Baseβπ) β§ πΎ β (0..^π)) β§ π¦ β β0) β πΎ β (0..^π)) |
23 | 12, 13, 21, 22 | fvmptd 7002 |
. . 3
β’ (((πΉ β (Baseβπ) β§ πΎ β (0..^π)) β§ π¦ β β0) β ((πΊβπΎ)β(πΉβπ¦)) = πΎ) |
24 | 23 | mpteq2dva 5247 |
. 2
β’ ((πΉ β (Baseβπ) β§ πΎ β (0..^π)) β (π¦ β β0 β¦ ((πΊβπΎ)β(πΉβπ¦))) = (π¦ β β0 β¦ πΎ)) |
25 | | smndex1ibas.n |
. . . . 5
β’ π β β |
26 | | smndex1ibas.i |
. . . . 5
β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) |
27 | 14, 25, 26, 1 | smndex1gbas 18779 |
. . . 4
β’ (πΎ β (0..^π) β (πΊβπΎ) β (Baseβπ)) |
28 | 14, 15 | efmndbasf 18752 |
. . . 4
β’ ((πΊβπΎ) β (Baseβπ) β (πΊβπΎ):β0βΆβ0) |
29 | 27, 28 | syl 17 |
. . 3
β’ (πΎ β (0..^π) β (πΊβπΎ):β0βΆβ0) |
30 | | fcompt 7127 |
. . 3
β’ (((πΊβπΎ):β0βΆβ0
β§ πΉ:β0βΆβ0)
β ((πΊβπΎ) β πΉ) = (π¦ β β0 β¦ ((πΊβπΎ)β(πΉβπ¦)))) |
31 | 29, 16, 30 | syl2anr 597 |
. 2
β’ ((πΉ β (Baseβπ) β§ πΎ β (0..^π)) β ((πΊβπΎ) β πΉ) = (π¦ β β0 β¦ ((πΊβπΎ)β(πΉβπ¦)))) |
32 | | eqidd 2733 |
. . . . . . 7
β’ (π₯ = π¦ β πΎ = πΎ) |
33 | 32 | cbvmptv 5260 |
. . . . . 6
β’ (π₯ β β0
β¦ πΎ) = (π¦ β β0
β¦ πΎ) |
34 | 4, 33 | eqtrdi 2788 |
. . . . 5
β’ (π = πΎ β (π₯ β β0 β¦ π) = (π¦ β β0 β¦ πΎ)) |
35 | 34 | adantl 482 |
. . . 4
β’ ((πΎ β (0..^π) β§ π = πΎ) β (π₯ β β0 β¦ π) = (π¦ β β0 β¦ πΎ)) |
36 | 7 | mptex 7221 |
. . . . 5
β’ (π¦ β β0
β¦ πΎ) β
V |
37 | 36 | a1i 11 |
. . . 4
β’ (πΎ β (0..^π) β (π¦ β β0 β¦ πΎ) β V) |
38 | 2, 35, 6, 37 | fvmptd 7002 |
. . 3
β’ (πΎ β (0..^π) β (πΊβπΎ) = (π¦ β β0 β¦ πΎ)) |
39 | 38 | adantl 482 |
. 2
β’ ((πΉ β (Baseβπ) β§ πΎ β (0..^π)) β (πΊβπΎ) = (π¦ β β0 β¦ πΎ)) |
40 | 24, 31, 39 | 3eqtr4d 2782 |
1
β’ ((πΉ β (Baseβπ) β§ πΎ β (0..^π)) β ((πΊβπΎ) β πΉ) = (πΊβπΎ)) |