| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1gid | Structured version Visualization version GIF version | ||
| Description: The composition of a constant function (𝐺‘𝐾) with another endofunction on ℕ0 results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| Ref | Expression |
|---|---|
| smndex1gid | ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.g | . . . . . . . 8 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛))) |
| 3 | id 22 | . . . . . . . . 9 ⊢ (𝑛 = 𝐾 → 𝑛 = 𝐾) | |
| 4 | 3 | mpteq2dv 5180 | . . . . . . . 8 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 6 | id 22 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁)) | |
| 7 | nn0ex 12382 | . . . . . . . . 9 ⊢ ℕ0 ∈ V | |
| 8 | 7 | mptex 7152 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V) |
| 10 | 2, 5, 6, 9 | fvmptd 6931 | . . . . . 6 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 13 | eqidd 2732 | . . . 4 ⊢ ((((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 = (𝐹‘𝑦)) → 𝐾 = 𝐾) | |
| 14 | smndex1ibas.m | . . . . . . . 8 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 15 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 16 | 14, 15 | efmndbasf 18778 | . . . . . . 7 ⊢ (𝐹 ∈ (Base‘𝑀) → 𝐹:ℕ0⟶ℕ0) |
| 17 | ffvelcdm 7009 | . . . . . . . 8 ⊢ ((𝐹:ℕ0⟶ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝐹‘𝑦) ∈ ℕ0) | |
| 18 | 17 | ex 412 | . . . . . . 7 ⊢ (𝐹:ℕ0⟶ℕ0 → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
| 19 | 16, 18 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (Base‘𝑀) → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
| 21 | 20 | imp 406 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐹‘𝑦) ∈ ℕ0) |
| 22 | simplr 768 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → 𝐾 ∈ (0..^𝑁)) | |
| 23 | 12, 13, 21, 22 | fvmptd 6931 | . . 3 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → ((𝐺‘𝐾)‘(𝐹‘𝑦)) = 𝐾) |
| 24 | 23 | mpteq2dva 5179 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦))) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
| 25 | smndex1ibas.n | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
| 26 | smndex1ibas.i | . . . . 5 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 27 | 14, 25, 26, 1 | smndex1gbas 18805 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) ∈ (Base‘𝑀)) |
| 28 | 14, 15 | efmndbasf 18778 | . . . 4 ⊢ ((𝐺‘𝐾) ∈ (Base‘𝑀) → (𝐺‘𝐾):ℕ0⟶ℕ0) |
| 29 | 27, 28 | syl 17 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾):ℕ0⟶ℕ0) |
| 30 | fcompt 7061 | . . 3 ⊢ (((𝐺‘𝐾):ℕ0⟶ℕ0 ∧ 𝐹:ℕ0⟶ℕ0) → ((𝐺‘𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦)))) | |
| 31 | 29, 16, 30 | syl2anr 597 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦)))) |
| 32 | eqidd 2732 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐾 = 𝐾) | |
| 33 | 32 | cbvmptv 5190 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾) |
| 34 | 4, 33 | eqtrdi 2782 | . . . . 5 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
| 35 | 34 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
| 36 | 7 | mptex 7152 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 ↦ 𝐾) ∈ V |
| 37 | 36 | a1i 11 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑦 ∈ ℕ0 ↦ 𝐾) ∈ V) |
| 38 | 2, 35, 6, 37 | fvmptd 6931 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
| 39 | 38 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺‘𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
| 40 | 24, 31, 39 | 3eqtr4d 2776 | 1 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5167 ∘ ccom 5615 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 0cc0 11001 ℕcn 12120 ℕ0cn0 12376 ..^cfzo 13549 mod cmo 13768 Basecbs 17115 EndoFMndcefmnd 18771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-tset 17175 df-efmnd 18772 |
| This theorem is referenced by: smndex1mgm 18810 smndex1mndlem 18812 |
| Copyright terms: Public domain | W3C validator |