MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1gid Structured version   Visualization version   GIF version

Theorem smndex1gid 18806
Description: The composition of a constant function (𝐺𝐾) with another endofunction on 0 results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
Assertion
Ref Expression
smndex1gid ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝐺𝐾))
Distinct variable groups:   𝑥,𝑁   𝑛,𝐾,𝑥   𝑛,𝑁   𝑥,𝐹   𝑥,𝑀
Allowed substitution hints:   𝐹(𝑛)   𝐺(𝑥,𝑛)   𝐼(𝑥,𝑛)   𝑀(𝑛)

Proof of Theorem smndex1gid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.g . . . . . . . 8 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
21a1i 11 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛)))
3 id 22 . . . . . . . . 9 (𝑛 = 𝐾𝑛 = 𝐾)
43mpteq2dv 5180 . . . . . . . 8 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
54adantl 481 . . . . . . 7 ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
6 id 22 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁))
7 nn0ex 12382 . . . . . . . . 9 0 ∈ V
87mptex 7152 . . . . . . . 8 (𝑥 ∈ ℕ0𝐾) ∈ V
98a1i 11 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0𝐾) ∈ V)
102, 5, 6, 9fvmptd 6931 . . . . . 6 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1110adantl 481 . . . . 5 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1211adantr 480 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
13 eqidd 2732 . . . 4 ((((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 = (𝐹𝑦)) → 𝐾 = 𝐾)
14 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
15 eqid 2731 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
1614, 15efmndbasf 18778 . . . . . . 7 (𝐹 ∈ (Base‘𝑀) → 𝐹:ℕ0⟶ℕ0)
17 ffvelcdm 7009 . . . . . . . 8 ((𝐹:ℕ0⟶ℕ0𝑦 ∈ ℕ0) → (𝐹𝑦) ∈ ℕ0)
1817ex 412 . . . . . . 7 (𝐹:ℕ0⟶ℕ0 → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
1916, 18syl 17 . . . . . 6 (𝐹 ∈ (Base‘𝑀) → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
2019adantr 480 . . . . 5 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
2120imp 406 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐹𝑦) ∈ ℕ0)
22 simplr 768 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → 𝐾 ∈ (0..^𝑁))
2312, 13, 21, 22fvmptd 6931 . . 3 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → ((𝐺𝐾)‘(𝐹𝑦)) = 𝐾)
2423mpteq2dva 5179 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))) = (𝑦 ∈ ℕ0𝐾))
25 smndex1ibas.n . . . . 5 𝑁 ∈ ℕ
26 smndex1ibas.i . . . . 5 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
2714, 25, 26, 1smndex1gbas 18805 . . . 4 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) ∈ (Base‘𝑀))
2814, 15efmndbasf 18778 . . . 4 ((𝐺𝐾) ∈ (Base‘𝑀) → (𝐺𝐾):ℕ0⟶ℕ0)
2927, 28syl 17 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾):ℕ0⟶ℕ0)
30 fcompt 7061 . . 3 (((𝐺𝐾):ℕ0⟶ℕ0𝐹:ℕ0⟶ℕ0) → ((𝐺𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))))
3129, 16, 30syl2anr 597 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))))
32 eqidd 2732 . . . . . . 7 (𝑥 = 𝑦𝐾 = 𝐾)
3332cbvmptv 5190 . . . . . 6 (𝑥 ∈ ℕ0𝐾) = (𝑦 ∈ ℕ0𝐾)
344, 33eqtrdi 2782 . . . . 5 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑦 ∈ ℕ0𝐾))
3534adantl 481 . . . 4 ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0𝑛) = (𝑦 ∈ ℕ0𝐾))
367mptex 7152 . . . . 5 (𝑦 ∈ ℕ0𝐾) ∈ V
3736a1i 11 . . . 4 (𝐾 ∈ (0..^𝑁) → (𝑦 ∈ ℕ0𝐾) ∈ V)
382, 35, 6, 37fvmptd 6931 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑦 ∈ ℕ0𝐾))
3938adantl 481 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺𝐾) = (𝑦 ∈ ℕ0𝐾))
4024, 31, 393eqtr4d 2776 1 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝐺𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5167  ccom 5615  wf 6472  cfv 6476  (class class class)co 7341  0cc0 11001  cn 12120  0cn0 12376  ..^cfzo 13549   mod cmo 13768  Basecbs 17115  EndoFMndcefmnd 18771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-tset 17175  df-efmnd 18772
This theorem is referenced by:  smndex1mgm  18810  smndex1mndlem  18812
  Copyright terms: Public domain W3C validator