![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1gid | Structured version Visualization version GIF version |
Description: The composition of a constant function (𝐺‘𝐾) with another endofunction on ℕ0 results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
Ref | Expression |
---|---|
smndex1gid | ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1ibas.g | . . . . . . . 8 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛))) |
3 | id 22 | . . . . . . . . 9 ⊢ (𝑛 = 𝐾 → 𝑛 = 𝐾) | |
4 | 3 | mpteq2dv 5268 | . . . . . . . 8 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
6 | id 22 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁)) | |
7 | nn0ex 12559 | . . . . . . . . 9 ⊢ ℕ0 ∈ V | |
8 | 7 | mptex 7260 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V) |
10 | 2, 5, 6, 9 | fvmptd 7036 | . . . . . 6 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
12 | 11 | adantr 480 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
13 | eqidd 2741 | . . . 4 ⊢ ((((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 = (𝐹‘𝑦)) → 𝐾 = 𝐾) | |
14 | smndex1ibas.m | . . . . . . . 8 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
15 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
16 | 14, 15 | efmndbasf 18910 | . . . . . . 7 ⊢ (𝐹 ∈ (Base‘𝑀) → 𝐹:ℕ0⟶ℕ0) |
17 | ffvelcdm 7115 | . . . . . . . 8 ⊢ ((𝐹:ℕ0⟶ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝐹‘𝑦) ∈ ℕ0) | |
18 | 17 | ex 412 | . . . . . . 7 ⊢ (𝐹:ℕ0⟶ℕ0 → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
19 | 16, 18 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (Base‘𝑀) → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
21 | 20 | imp 406 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐹‘𝑦) ∈ ℕ0) |
22 | simplr 768 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → 𝐾 ∈ (0..^𝑁)) | |
23 | 12, 13, 21, 22 | fvmptd 7036 | . . 3 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → ((𝐺‘𝐾)‘(𝐹‘𝑦)) = 𝐾) |
24 | 23 | mpteq2dva 5266 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦))) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
25 | smndex1ibas.n | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
26 | smndex1ibas.i | . . . . 5 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
27 | 14, 25, 26, 1 | smndex1gbas 18937 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) ∈ (Base‘𝑀)) |
28 | 14, 15 | efmndbasf 18910 | . . . 4 ⊢ ((𝐺‘𝐾) ∈ (Base‘𝑀) → (𝐺‘𝐾):ℕ0⟶ℕ0) |
29 | 27, 28 | syl 17 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾):ℕ0⟶ℕ0) |
30 | fcompt 7167 | . . 3 ⊢ (((𝐺‘𝐾):ℕ0⟶ℕ0 ∧ 𝐹:ℕ0⟶ℕ0) → ((𝐺‘𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦)))) | |
31 | 29, 16, 30 | syl2anr 596 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦)))) |
32 | eqidd 2741 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐾 = 𝐾) | |
33 | 32 | cbvmptv 5279 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾) |
34 | 4, 33 | eqtrdi 2796 | . . . . 5 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
35 | 34 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
36 | 7 | mptex 7260 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 ↦ 𝐾) ∈ V |
37 | 36 | a1i 11 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑦 ∈ ℕ0 ↦ 𝐾) ∈ V) |
38 | 2, 35, 6, 37 | fvmptd 7036 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
39 | 38 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺‘𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
40 | 24, 31, 39 | 3eqtr4d 2790 | 1 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℕcn 12293 ℕ0cn0 12553 ..^cfzo 13711 mod cmo 13920 Basecbs 17258 EndoFMndcefmnd 18903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-tset 17330 df-efmnd 18904 |
This theorem is referenced by: smndex1mgm 18942 smndex1mndlem 18944 |
Copyright terms: Public domain | W3C validator |