MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1gid Structured version   Visualization version   GIF version

Theorem smndex1gid 18457
Description: The composition of a constant function (𝐺𝐾) with another endofunction on 0 results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
Assertion
Ref Expression
smndex1gid ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝐺𝐾))
Distinct variable groups:   𝑥,𝑁   𝑛,𝐾,𝑥   𝑛,𝑁   𝑥,𝐹   𝑥,𝑀
Allowed substitution hints:   𝐹(𝑛)   𝐺(𝑥,𝑛)   𝐼(𝑥,𝑛)   𝑀(𝑛)

Proof of Theorem smndex1gid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.g . . . . . . . 8 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
21a1i 11 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛)))
3 id 22 . . . . . . . . 9 (𝑛 = 𝐾𝑛 = 𝐾)
43mpteq2dv 5172 . . . . . . . 8 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
54adantl 481 . . . . . . 7 ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
6 id 22 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁))
7 nn0ex 12169 . . . . . . . . 9 0 ∈ V
87mptex 7081 . . . . . . . 8 (𝑥 ∈ ℕ0𝐾) ∈ V
98a1i 11 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0𝐾) ∈ V)
102, 5, 6, 9fvmptd 6864 . . . . . 6 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1110adantl 481 . . . . 5 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1211adantr 480 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
13 eqidd 2739 . . . 4 ((((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 = (𝐹𝑦)) → 𝐾 = 𝐾)
14 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
15 eqid 2738 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
1614, 15efmndbasf 18429 . . . . . . 7 (𝐹 ∈ (Base‘𝑀) → 𝐹:ℕ0⟶ℕ0)
17 ffvelrn 6941 . . . . . . . 8 ((𝐹:ℕ0⟶ℕ0𝑦 ∈ ℕ0) → (𝐹𝑦) ∈ ℕ0)
1817ex 412 . . . . . . 7 (𝐹:ℕ0⟶ℕ0 → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
1916, 18syl 17 . . . . . 6 (𝐹 ∈ (Base‘𝑀) → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
2019adantr 480 . . . . 5 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
2120imp 406 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐹𝑦) ∈ ℕ0)
22 simplr 765 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → 𝐾 ∈ (0..^𝑁))
2312, 13, 21, 22fvmptd 6864 . . 3 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → ((𝐺𝐾)‘(𝐹𝑦)) = 𝐾)
2423mpteq2dva 5170 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))) = (𝑦 ∈ ℕ0𝐾))
25 smndex1ibas.n . . . . 5 𝑁 ∈ ℕ
26 smndex1ibas.i . . . . 5 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
2714, 25, 26, 1smndex1gbas 18456 . . . 4 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) ∈ (Base‘𝑀))
2814, 15efmndbasf 18429 . . . 4 ((𝐺𝐾) ∈ (Base‘𝑀) → (𝐺𝐾):ℕ0⟶ℕ0)
2927, 28syl 17 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾):ℕ0⟶ℕ0)
30 fcompt 6987 . . 3 (((𝐺𝐾):ℕ0⟶ℕ0𝐹:ℕ0⟶ℕ0) → ((𝐺𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))))
3129, 16, 30syl2anr 596 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))))
32 eqidd 2739 . . . . . . 7 (𝑥 = 𝑦𝐾 = 𝐾)
3332cbvmptv 5183 . . . . . 6 (𝑥 ∈ ℕ0𝐾) = (𝑦 ∈ ℕ0𝐾)
344, 33eqtrdi 2795 . . . . 5 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑦 ∈ ℕ0𝐾))
3534adantl 481 . . . 4 ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0𝑛) = (𝑦 ∈ ℕ0𝐾))
367mptex 7081 . . . . 5 (𝑦 ∈ ℕ0𝐾) ∈ V
3736a1i 11 . . . 4 (𝐾 ∈ (0..^𝑁) → (𝑦 ∈ ℕ0𝐾) ∈ V)
382, 35, 6, 37fvmptd 6864 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑦 ∈ ℕ0𝐾))
3938adantl 481 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺𝐾) = (𝑦 ∈ ℕ0𝐾))
4024, 31, 393eqtr4d 2788 1 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝐺𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cmpt 5153  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  cn 11903  0cn0 12163  ..^cfzo 13311   mod cmo 13517  Basecbs 16840  EndoFMndcefmnd 18422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-tset 16907  df-efmnd 18423
This theorem is referenced by:  smndex1mgm  18461  smndex1mndlem  18463
  Copyright terms: Public domain W3C validator