![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1gid | Structured version Visualization version GIF version |
Description: The composition of a constant function (𝐺‘𝐾) with another endofunction on ℕ0 results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
Ref | Expression |
---|---|
smndex1gid | ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1ibas.g | . . . . . . . 8 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛))) |
3 | id 22 | . . . . . . . . 9 ⊢ (𝑛 = 𝐾 → 𝑛 = 𝐾) | |
4 | 3 | mpteq2dv 5207 | . . . . . . . 8 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
5 | 4 | adantl 482 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
6 | id 22 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁)) | |
7 | nn0ex 12419 | . . . . . . . . 9 ⊢ ℕ0 ∈ V | |
8 | 7 | mptex 7173 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V) |
10 | 2, 5, 6, 9 | fvmptd 6955 | . . . . . 6 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
11 | 10 | adantl 482 | . . . . 5 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
12 | 11 | adantr 481 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
13 | eqidd 2737 | . . . 4 ⊢ ((((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 = (𝐹‘𝑦)) → 𝐾 = 𝐾) | |
14 | smndex1ibas.m | . . . . . . . 8 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
15 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
16 | 14, 15 | efmndbasf 18685 | . . . . . . 7 ⊢ (𝐹 ∈ (Base‘𝑀) → 𝐹:ℕ0⟶ℕ0) |
17 | ffvelcdm 7032 | . . . . . . . 8 ⊢ ((𝐹:ℕ0⟶ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝐹‘𝑦) ∈ ℕ0) | |
18 | 17 | ex 413 | . . . . . . 7 ⊢ (𝐹:ℕ0⟶ℕ0 → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
19 | 16, 18 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (Base‘𝑀) → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
20 | 19 | adantr 481 | . . . . 5 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
21 | 20 | imp 407 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐹‘𝑦) ∈ ℕ0) |
22 | simplr 767 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → 𝐾 ∈ (0..^𝑁)) | |
23 | 12, 13, 21, 22 | fvmptd 6955 | . . 3 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → ((𝐺‘𝐾)‘(𝐹‘𝑦)) = 𝐾) |
24 | 23 | mpteq2dva 5205 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦))) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
25 | smndex1ibas.n | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
26 | smndex1ibas.i | . . . . 5 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
27 | 14, 25, 26, 1 | smndex1gbas 18712 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) ∈ (Base‘𝑀)) |
28 | 14, 15 | efmndbasf 18685 | . . . 4 ⊢ ((𝐺‘𝐾) ∈ (Base‘𝑀) → (𝐺‘𝐾):ℕ0⟶ℕ0) |
29 | 27, 28 | syl 17 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾):ℕ0⟶ℕ0) |
30 | fcompt 7079 | . . 3 ⊢ (((𝐺‘𝐾):ℕ0⟶ℕ0 ∧ 𝐹:ℕ0⟶ℕ0) → ((𝐺‘𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦)))) | |
31 | 29, 16, 30 | syl2anr 597 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦)))) |
32 | eqidd 2737 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐾 = 𝐾) | |
33 | 32 | cbvmptv 5218 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾) |
34 | 4, 33 | eqtrdi 2792 | . . . . 5 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
35 | 34 | adantl 482 | . . . 4 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
36 | 7 | mptex 7173 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 ↦ 𝐾) ∈ V |
37 | 36 | a1i 11 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑦 ∈ ℕ0 ↦ 𝐾) ∈ V) |
38 | 2, 35, 6, 37 | fvmptd 6955 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
39 | 38 | adantl 482 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺‘𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
40 | 24, 31, 39 | 3eqtr4d 2786 | 1 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ↦ cmpt 5188 ∘ ccom 5637 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 0cc0 11051 ℕcn 12153 ℕ0cn0 12413 ..^cfzo 13567 mod cmo 13774 Basecbs 17083 EndoFMndcefmnd 18678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-struct 17019 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-tset 17152 df-efmnd 18679 |
This theorem is referenced by: smndex1mgm 18717 smndex1mndlem 18719 |
Copyright terms: Public domain | W3C validator |