MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1gid Structured version   Visualization version   GIF version

Theorem smndex1gid 18713
Description: The composition of a constant function (𝐺𝐾) with another endofunction on 0 results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
Assertion
Ref Expression
smndex1gid ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝐺𝐾))
Distinct variable groups:   𝑥,𝑁   𝑛,𝐾,𝑥   𝑛,𝑁   𝑥,𝐹   𝑥,𝑀
Allowed substitution hints:   𝐹(𝑛)   𝐺(𝑥,𝑛)   𝐼(𝑥,𝑛)   𝑀(𝑛)

Proof of Theorem smndex1gid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.g . . . . . . . 8 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
21a1i 11 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛)))
3 id 22 . . . . . . . . 9 (𝑛 = 𝐾𝑛 = 𝐾)
43mpteq2dv 5207 . . . . . . . 8 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
54adantl 482 . . . . . . 7 ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
6 id 22 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁))
7 nn0ex 12419 . . . . . . . . 9 0 ∈ V
87mptex 7173 . . . . . . . 8 (𝑥 ∈ ℕ0𝐾) ∈ V
98a1i 11 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0𝐾) ∈ V)
102, 5, 6, 9fvmptd 6955 . . . . . 6 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1110adantl 482 . . . . 5 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1211adantr 481 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
13 eqidd 2737 . . . 4 ((((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 = (𝐹𝑦)) → 𝐾 = 𝐾)
14 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
15 eqid 2736 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
1614, 15efmndbasf 18685 . . . . . . 7 (𝐹 ∈ (Base‘𝑀) → 𝐹:ℕ0⟶ℕ0)
17 ffvelcdm 7032 . . . . . . . 8 ((𝐹:ℕ0⟶ℕ0𝑦 ∈ ℕ0) → (𝐹𝑦) ∈ ℕ0)
1817ex 413 . . . . . . 7 (𝐹:ℕ0⟶ℕ0 → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
1916, 18syl 17 . . . . . 6 (𝐹 ∈ (Base‘𝑀) → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
2019adantr 481 . . . . 5 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
2120imp 407 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐹𝑦) ∈ ℕ0)
22 simplr 767 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → 𝐾 ∈ (0..^𝑁))
2312, 13, 21, 22fvmptd 6955 . . 3 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → ((𝐺𝐾)‘(𝐹𝑦)) = 𝐾)
2423mpteq2dva 5205 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))) = (𝑦 ∈ ℕ0𝐾))
25 smndex1ibas.n . . . . 5 𝑁 ∈ ℕ
26 smndex1ibas.i . . . . 5 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
2714, 25, 26, 1smndex1gbas 18712 . . . 4 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) ∈ (Base‘𝑀))
2814, 15efmndbasf 18685 . . . 4 ((𝐺𝐾) ∈ (Base‘𝑀) → (𝐺𝐾):ℕ0⟶ℕ0)
2927, 28syl 17 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾):ℕ0⟶ℕ0)
30 fcompt 7079 . . 3 (((𝐺𝐾):ℕ0⟶ℕ0𝐹:ℕ0⟶ℕ0) → ((𝐺𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))))
3129, 16, 30syl2anr 597 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))))
32 eqidd 2737 . . . . . . 7 (𝑥 = 𝑦𝐾 = 𝐾)
3332cbvmptv 5218 . . . . . 6 (𝑥 ∈ ℕ0𝐾) = (𝑦 ∈ ℕ0𝐾)
344, 33eqtrdi 2792 . . . . 5 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑦 ∈ ℕ0𝐾))
3534adantl 482 . . . 4 ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0𝑛) = (𝑦 ∈ ℕ0𝐾))
367mptex 7173 . . . . 5 (𝑦 ∈ ℕ0𝐾) ∈ V
3736a1i 11 . . . 4 (𝐾 ∈ (0..^𝑁) → (𝑦 ∈ ℕ0𝐾) ∈ V)
382, 35, 6, 37fvmptd 6955 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑦 ∈ ℕ0𝐾))
3938adantl 482 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺𝐾) = (𝑦 ∈ ℕ0𝐾))
4024, 31, 393eqtr4d 2786 1 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝐺𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cmpt 5188  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  0cc0 11051  cn 12153  0cn0 12413  ..^cfzo 13567   mod cmo 13774  Basecbs 17083  EndoFMndcefmnd 18678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-tset 17152  df-efmnd 18679
This theorem is referenced by:  smndex1mgm  18717  smndex1mndlem  18719
  Copyright terms: Public domain W3C validator