| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1gid | Structured version Visualization version GIF version | ||
| Description: The composition of a constant function (𝐺‘𝐾) with another endofunction on ℕ0 results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| Ref | Expression |
|---|---|
| smndex1gid | ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.g | . . . . . . . 8 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛))) |
| 3 | id 22 | . . . . . . . . 9 ⊢ (𝑛 = 𝐾 → 𝑛 = 𝐾) | |
| 4 | 3 | mpteq2dv 5186 | . . . . . . . 8 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 6 | id 22 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁)) | |
| 7 | nn0ex 12390 | . . . . . . . . 9 ⊢ ℕ0 ∈ V | |
| 8 | 7 | mptex 7159 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V) |
| 10 | 2, 5, 6, 9 | fvmptd 6937 | . . . . . 6 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
| 13 | eqidd 2730 | . . . 4 ⊢ ((((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 = (𝐹‘𝑦)) → 𝐾 = 𝐾) | |
| 14 | smndex1ibas.m | . . . . . . . 8 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 15 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 16 | 14, 15 | efmndbasf 18749 | . . . . . . 7 ⊢ (𝐹 ∈ (Base‘𝑀) → 𝐹:ℕ0⟶ℕ0) |
| 17 | ffvelcdm 7015 | . . . . . . . 8 ⊢ ((𝐹:ℕ0⟶ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝐹‘𝑦) ∈ ℕ0) | |
| 18 | 17 | ex 412 | . . . . . . 7 ⊢ (𝐹:ℕ0⟶ℕ0 → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
| 19 | 16, 18 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (Base‘𝑀) → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
| 21 | 20 | imp 406 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐹‘𝑦) ∈ ℕ0) |
| 22 | simplr 768 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → 𝐾 ∈ (0..^𝑁)) | |
| 23 | 12, 13, 21, 22 | fvmptd 6937 | . . 3 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → ((𝐺‘𝐾)‘(𝐹‘𝑦)) = 𝐾) |
| 24 | 23 | mpteq2dva 5185 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦))) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
| 25 | smndex1ibas.n | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
| 26 | smndex1ibas.i | . . . . 5 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 27 | 14, 25, 26, 1 | smndex1gbas 18776 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) ∈ (Base‘𝑀)) |
| 28 | 14, 15 | efmndbasf 18749 | . . . 4 ⊢ ((𝐺‘𝐾) ∈ (Base‘𝑀) → (𝐺‘𝐾):ℕ0⟶ℕ0) |
| 29 | 27, 28 | syl 17 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾):ℕ0⟶ℕ0) |
| 30 | fcompt 7067 | . . 3 ⊢ (((𝐺‘𝐾):ℕ0⟶ℕ0 ∧ 𝐹:ℕ0⟶ℕ0) → ((𝐺‘𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦)))) | |
| 31 | 29, 16, 30 | syl2anr 597 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦)))) |
| 32 | eqidd 2730 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐾 = 𝐾) | |
| 33 | 32 | cbvmptv 5196 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾) |
| 34 | 4, 33 | eqtrdi 2780 | . . . . 5 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
| 35 | 34 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
| 36 | 7 | mptex 7159 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 ↦ 𝐾) ∈ V |
| 37 | 36 | a1i 11 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑦 ∈ ℕ0 ↦ 𝐾) ∈ V) |
| 38 | 2, 35, 6, 37 | fvmptd 6937 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
| 39 | 38 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺‘𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
| 40 | 24, 31, 39 | 3eqtr4d 2774 | 1 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ↦ cmpt 5173 ∘ ccom 5623 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 0cc0 11009 ℕcn 12128 ℕ0cn0 12384 ..^cfzo 13557 mod cmo 13773 Basecbs 17120 EndoFMndcefmnd 18742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-tset 17180 df-efmnd 18743 |
| This theorem is referenced by: smndex1mgm 18781 smndex1mndlem 18783 |
| Copyright terms: Public domain | W3C validator |