MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1gid Structured version   Visualization version   GIF version

Theorem smndex1gid 18771
Description: The composition of a constant function (𝐺𝐾) with another endofunction on 0 results in (𝐺𝐾) itself. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
Assertion
Ref Expression
smndex1gid ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝐺𝐾))
Distinct variable groups:   𝑥,𝑁   𝑛,𝐾,𝑥   𝑛,𝑁   𝑥,𝐹   𝑥,𝑀
Allowed substitution hints:   𝐹(𝑛)   𝐺(𝑥,𝑛)   𝐼(𝑥,𝑛)   𝑀(𝑛)

Proof of Theorem smndex1gid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.g . . . . . . . 8 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
21a1i 11 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛)))
3 id 22 . . . . . . . . 9 (𝑛 = 𝐾𝑛 = 𝐾)
43mpteq2dv 5246 . . . . . . . 8 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
54adantl 483 . . . . . . 7 ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
6 id 22 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁))
7 nn0ex 12465 . . . . . . . . 9 0 ∈ V
87mptex 7212 . . . . . . . 8 (𝑥 ∈ ℕ0𝐾) ∈ V
98a1i 11 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0𝐾) ∈ V)
102, 5, 6, 9fvmptd 6994 . . . . . 6 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1110adantl 483 . . . . 5 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
1211adantr 482 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
13 eqidd 2734 . . . 4 ((((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 = (𝐹𝑦)) → 𝐾 = 𝐾)
14 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
15 eqid 2733 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
1614, 15efmndbasf 18743 . . . . . . 7 (𝐹 ∈ (Base‘𝑀) → 𝐹:ℕ0⟶ℕ0)
17 ffvelcdm 7071 . . . . . . . 8 ((𝐹:ℕ0⟶ℕ0𝑦 ∈ ℕ0) → (𝐹𝑦) ∈ ℕ0)
1817ex 414 . . . . . . 7 (𝐹:ℕ0⟶ℕ0 → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
1916, 18syl 17 . . . . . 6 (𝐹 ∈ (Base‘𝑀) → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
2019adantr 482 . . . . 5 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 → (𝐹𝑦) ∈ ℕ0))
2120imp 408 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐹𝑦) ∈ ℕ0)
22 simplr 768 . . . 4 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → 𝐾 ∈ (0..^𝑁))
2312, 13, 21, 22fvmptd 6994 . . 3 (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → ((𝐺𝐾)‘(𝐹𝑦)) = 𝐾)
2423mpteq2dva 5244 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))) = (𝑦 ∈ ℕ0𝐾))
25 smndex1ibas.n . . . . 5 𝑁 ∈ ℕ
26 smndex1ibas.i . . . . 5 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
2714, 25, 26, 1smndex1gbas 18770 . . . 4 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) ∈ (Base‘𝑀))
2814, 15efmndbasf 18743 . . . 4 ((𝐺𝐾) ∈ (Base‘𝑀) → (𝐺𝐾):ℕ0⟶ℕ0)
2927, 28syl 17 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾):ℕ0⟶ℕ0)
30 fcompt 7118 . . 3 (((𝐺𝐾):ℕ0⟶ℕ0𝐹:ℕ0⟶ℕ0) → ((𝐺𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))))
3129, 16, 30syl2anr 598 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺𝐾)‘(𝐹𝑦))))
32 eqidd 2734 . . . . . . 7 (𝑥 = 𝑦𝐾 = 𝐾)
3332cbvmptv 5257 . . . . . 6 (𝑥 ∈ ℕ0𝐾) = (𝑦 ∈ ℕ0𝐾)
344, 33eqtrdi 2789 . . . . 5 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑦 ∈ ℕ0𝐾))
3534adantl 483 . . . 4 ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0𝑛) = (𝑦 ∈ ℕ0𝐾))
367mptex 7212 . . . . 5 (𝑦 ∈ ℕ0𝐾) ∈ V
3736a1i 11 . . . 4 (𝐾 ∈ (0..^𝑁) → (𝑦 ∈ ℕ0𝐾) ∈ V)
382, 35, 6, 37fvmptd 6994 . . 3 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑦 ∈ ℕ0𝐾))
3938adantl 483 . 2 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺𝐾) = (𝑦 ∈ ℕ0𝐾))
4024, 31, 393eqtr4d 2783 1 ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺𝐾) ∘ 𝐹) = (𝐺𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  cmpt 5227  ccom 5676  wf 6531  cfv 6535  (class class class)co 7396  0cc0 11097  cn 12199  0cn0 12459  ..^cfzo 13614   mod cmo 13821  Basecbs 17131  EndoFMndcefmnd 18736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-uz 12810  df-fz 13472  df-fzo 13615  df-struct 17067  df-slot 17102  df-ndx 17114  df-base 17132  df-plusg 17197  df-tset 17203  df-efmnd 18737
This theorem is referenced by:  smndex1mgm  18775  smndex1mndlem  18777
  Copyright terms: Public domain W3C validator