Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smndex1gid | Structured version Visualization version GIF version |
Description: The composition of a constant function (𝐺‘𝐾) with another endofunction on ℕ0 results in (𝐺‘𝐾) itself. (Contributed by AV, 14-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
Ref | Expression |
---|---|
smndex1gid | ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1ibas.g | . . . . . . . 8 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛))) |
3 | id 22 | . . . . . . . . 9 ⊢ (𝑛 = 𝐾 → 𝑛 = 𝐾) | |
4 | 3 | mpteq2dv 5132 | . . . . . . . 8 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
5 | 4 | adantl 485 | . . . . . . 7 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
6 | id 22 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁)) | |
7 | nn0ex 11953 | . . . . . . . . 9 ⊢ ℕ0 ∈ V | |
8 | 7 | mptex 6983 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V) |
10 | 2, 5, 6, 9 | fvmptd 6771 | . . . . . 6 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
11 | 10 | adantl 485 | . . . . 5 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
12 | 11 | adantr 484 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
13 | eqidd 2759 | . . . 4 ⊢ ((((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 = (𝐹‘𝑦)) → 𝐾 = 𝐾) | |
14 | smndex1ibas.m | . . . . . . . 8 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
15 | eqid 2758 | . . . . . . . 8 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
16 | 14, 15 | efmndbasf 18119 | . . . . . . 7 ⊢ (𝐹 ∈ (Base‘𝑀) → 𝐹:ℕ0⟶ℕ0) |
17 | ffvelrn 6846 | . . . . . . . 8 ⊢ ((𝐹:ℕ0⟶ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝐹‘𝑦) ∈ ℕ0) | |
18 | 17 | ex 416 | . . . . . . 7 ⊢ (𝐹:ℕ0⟶ℕ0 → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
19 | 16, 18 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (Base‘𝑀) → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
20 | 19 | adantr 484 | . . . . 5 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 → (𝐹‘𝑦) ∈ ℕ0)) |
21 | 20 | imp 410 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → (𝐹‘𝑦) ∈ ℕ0) |
22 | simplr 768 | . . . 4 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → 𝐾 ∈ (0..^𝑁)) | |
23 | 12, 13, 21, 22 | fvmptd 6771 | . . 3 ⊢ (((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℕ0) → ((𝐺‘𝐾)‘(𝐹‘𝑦)) = 𝐾) |
24 | 23 | mpteq2dva 5131 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦))) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
25 | smndex1ibas.n | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
26 | smndex1ibas.i | . . . . 5 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
27 | 14, 25, 26, 1 | smndex1gbas 18146 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) ∈ (Base‘𝑀)) |
28 | 14, 15 | efmndbasf 18119 | . . . 4 ⊢ ((𝐺‘𝐾) ∈ (Base‘𝑀) → (𝐺‘𝐾):ℕ0⟶ℕ0) |
29 | 27, 28 | syl 17 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾):ℕ0⟶ℕ0) |
30 | fcompt 6892 | . . 3 ⊢ (((𝐺‘𝐾):ℕ0⟶ℕ0 ∧ 𝐹:ℕ0⟶ℕ0) → ((𝐺‘𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦)))) | |
31 | 29, 16, 30 | syl2anr 599 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝑦 ∈ ℕ0 ↦ ((𝐺‘𝐾)‘(𝐹‘𝑦)))) |
32 | eqidd 2759 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐾 = 𝐾) | |
33 | 32 | cbvmptv 5139 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾) |
34 | 4, 33 | eqtrdi 2809 | . . . . 5 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
35 | 34 | adantl 485 | . . . 4 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
36 | 7 | mptex 6983 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 ↦ 𝐾) ∈ V |
37 | 36 | a1i 11 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑦 ∈ ℕ0 ↦ 𝐾) ∈ V) |
38 | 2, 35, 6, 37 | fvmptd 6771 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
39 | 38 | adantl 485 | . 2 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → (𝐺‘𝐾) = (𝑦 ∈ ℕ0 ↦ 𝐾)) |
40 | 24, 31, 39 | 3eqtr4d 2803 | 1 ⊢ ((𝐹 ∈ (Base‘𝑀) ∧ 𝐾 ∈ (0..^𝑁)) → ((𝐺‘𝐾) ∘ 𝐹) = (𝐺‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ↦ cmpt 5116 ∘ ccom 5532 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 0cc0 10588 ℕcn 11687 ℕ0cn0 11947 ..^cfzo 13095 mod cmo 13299 Basecbs 16554 EndoFMndcefmnd 18112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-fzo 13096 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-plusg 16649 df-tset 16655 df-efmnd 18113 |
This theorem is referenced by: smndex1mgm 18151 smndex1mndlem 18153 |
Copyright terms: Public domain | W3C validator |