![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioo2bl | Structured version Visualization version GIF version |
Description: An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
remet.1 | ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
Ref | Expression |
---|---|
ioo2bl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdcl 11263 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 + 𝐴) ∈ ℝ) | |
2 | 1 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 𝐴) ∈ ℝ) |
3 | 2 | rehalfcld 12536 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝐴) / 2) ∈ ℝ) |
4 | resubcl 11596 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
5 | 4 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
6 | 5 | rehalfcld 12536 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 − 𝐴) / 2) ∈ ℝ) |
7 | remet.1 | . . . 4 ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
8 | 7 | bl2ioo 24826 | . . 3 ⊢ ((((𝐵 + 𝐴) / 2) ∈ ℝ ∧ ((𝐵 − 𝐴) / 2) ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2)) = ((((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)))) |
9 | 3, 6, 8 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2)) = ((((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)))) |
10 | recn 11270 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
11 | recn 11270 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
12 | addcom 11472 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) | |
13 | 10, 11, 12 | syl2anr 596 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
14 | 13 | oveq1d 7460 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝐴) / 2) = ((𝐴 + 𝐵) / 2)) |
15 | 14 | oveq1d 7460 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2)) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
16 | halfaddsub 12522 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)) = 𝐵 ∧ (((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2)) = 𝐴)) | |
17 | 10, 11, 16 | syl2anr 596 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)) = 𝐵 ∧ (((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2)) = 𝐴)) |
18 | 17 | simprd 495 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2)) = 𝐴) |
19 | 17 | simpld 494 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)) = 𝐵) |
20 | 18, 19 | oveq12d 7463 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2))) = (𝐴(,)𝐵)) |
21 | 9, 15, 20 | 3eqtr3rd 2783 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2103 × cxp 5697 ↾ cres 5701 ∘ ccom 5703 ‘cfv 6572 (class class class)co 7445 ℂcc 11178 ℝcr 11179 + caddc 11183 − cmin 11516 / cdiv 11943 2c2 12344 (,)cioo 13403 abscabs 15279 ballcbl 21369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 ax-pre-sup 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-er 8759 df-map 8882 df-en 9000 df-dom 9001 df-sdom 9002 df-sup 9507 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-div 11944 df-nn 12290 df-2 12352 df-3 12353 df-n0 12550 df-z 12636 df-uz 12900 df-rp 13054 df-xadd 13172 df-ioo 13407 df-seq 14049 df-exp 14109 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 |
This theorem is referenced by: ioo2blex 24828 |
Copyright terms: Public domain | W3C validator |