![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioo2bl | Structured version Visualization version GIF version |
Description: An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
remet.1 | β’ π· = ((abs β β ) βΎ (β Γ β)) |
Ref | Expression |
---|---|
ioo2bl | β’ ((π΄ β β β§ π΅ β β) β (π΄(,)π΅) = (((π΄ + π΅) / 2)(ballβπ·)((π΅ β π΄) / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdcl 11195 | . . . . 5 β’ ((π΅ β β β§ π΄ β β) β (π΅ + π΄) β β) | |
2 | 1 | ancoms 457 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΅ + π΄) β β) |
3 | 2 | rehalfcld 12463 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΅ + π΄) / 2) β β) |
4 | resubcl 11528 | . . . . 5 β’ ((π΅ β β β§ π΄ β β) β (π΅ β π΄) β β) | |
5 | 4 | ancoms 457 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΅ β π΄) β β) |
6 | 5 | rehalfcld 12463 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΅ β π΄) / 2) β β) |
7 | remet.1 | . . . 4 β’ π· = ((abs β β ) βΎ (β Γ β)) | |
8 | 7 | bl2ioo 24528 | . . 3 β’ ((((π΅ + π΄) / 2) β β β§ ((π΅ β π΄) / 2) β β) β (((π΅ + π΄) / 2)(ballβπ·)((π΅ β π΄) / 2)) = ((((π΅ + π΄) / 2) β ((π΅ β π΄) / 2))(,)(((π΅ + π΄) / 2) + ((π΅ β π΄) / 2)))) |
9 | 3, 6, 8 | syl2anc 582 | . 2 β’ ((π΄ β β β§ π΅ β β) β (((π΅ + π΄) / 2)(ballβπ·)((π΅ β π΄) / 2)) = ((((π΅ + π΄) / 2) β ((π΅ β π΄) / 2))(,)(((π΅ + π΄) / 2) + ((π΅ β π΄) / 2)))) |
10 | recn 11202 | . . . . 5 β’ (π΅ β β β π΅ β β) | |
11 | recn 11202 | . . . . 5 β’ (π΄ β β β π΄ β β) | |
12 | addcom 11404 | . . . . 5 β’ ((π΅ β β β§ π΄ β β) β (π΅ + π΄) = (π΄ + π΅)) | |
13 | 10, 11, 12 | syl2anr 595 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΅ + π΄) = (π΄ + π΅)) |
14 | 13 | oveq1d 7426 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΅ + π΄) / 2) = ((π΄ + π΅) / 2)) |
15 | 14 | oveq1d 7426 | . 2 β’ ((π΄ β β β§ π΅ β β) β (((π΅ + π΄) / 2)(ballβπ·)((π΅ β π΄) / 2)) = (((π΄ + π΅) / 2)(ballβπ·)((π΅ β π΄) / 2))) |
16 | halfaddsub 12449 | . . . . 5 β’ ((π΅ β β β§ π΄ β β) β ((((π΅ + π΄) / 2) + ((π΅ β π΄) / 2)) = π΅ β§ (((π΅ + π΄) / 2) β ((π΅ β π΄) / 2)) = π΄)) | |
17 | 10, 11, 16 | syl2anr 595 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β ((((π΅ + π΄) / 2) + ((π΅ β π΄) / 2)) = π΅ β§ (((π΅ + π΄) / 2) β ((π΅ β π΄) / 2)) = π΄)) |
18 | 17 | simprd 494 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (((π΅ + π΄) / 2) β ((π΅ β π΄) / 2)) = π΄) |
19 | 17 | simpld 493 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (((π΅ + π΄) / 2) + ((π΅ β π΄) / 2)) = π΅) |
20 | 18, 19 | oveq12d 7429 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((((π΅ + π΄) / 2) β ((π΅ β π΄) / 2))(,)(((π΅ + π΄) / 2) + ((π΅ β π΄) / 2))) = (π΄(,)π΅)) |
21 | 9, 15, 20 | 3eqtr3rd 2779 | 1 β’ ((π΄ β β β§ π΅ β β) β (π΄(,)π΅) = (((π΄ + π΅) / 2)(ballβπ·)((π΅ β π΄) / 2))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 Γ cxp 5673 βΎ cres 5677 β ccom 5679 βcfv 6542 (class class class)co 7411 βcc 11110 βcr 11111 + caddc 11115 β cmin 11448 / cdiv 11875 2c2 12271 (,)cioo 13328 abscabs 15185 ballcbl 21131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-xadd 13097 df-ioo 13332 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 |
This theorem is referenced by: ioo2blex 24530 |
Copyright terms: Public domain | W3C validator |