MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioo2bl Structured version   Visualization version   GIF version

Theorem ioo2bl 23377
Description: An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
ioo2bl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵𝐴) / 2)))

Proof of Theorem ioo2bl
StepHypRef Expression
1 readdcl 10598 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 + 𝐴) ∈ ℝ)
21ancoms 461 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 𝐴) ∈ ℝ)
32rehalfcld 11863 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝐴) / 2) ∈ ℝ)
4 resubcl 10928 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
54ancoms 461 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
65rehalfcld 11863 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴) / 2) ∈ ℝ)
7 remet.1 . . . 4 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
87bl2ioo 23376 . . 3 ((((𝐵 + 𝐴) / 2) ∈ ℝ ∧ ((𝐵𝐴) / 2) ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵𝐴) / 2)) = ((((𝐵 + 𝐴) / 2) − ((𝐵𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵𝐴) / 2))))
93, 6, 8syl2anc 586 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵𝐴) / 2)) = ((((𝐵 + 𝐴) / 2) − ((𝐵𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵𝐴) / 2))))
10 recn 10605 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
11 recn 10605 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12 addcom 10804 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵))
1310, 11, 12syl2anr 598 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 𝐴) = (𝐴 + 𝐵))
1413oveq1d 7148 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝐴) / 2) = ((𝐴 + 𝐵) / 2))
1514oveq1d 7148 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵𝐴) / 2)) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵𝐴) / 2)))
16 halfaddsub 11849 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((((𝐵 + 𝐴) / 2) + ((𝐵𝐴) / 2)) = 𝐵 ∧ (((𝐵 + 𝐴) / 2) − ((𝐵𝐴) / 2)) = 𝐴))
1710, 11, 16syl2anr 598 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐵 + 𝐴) / 2) + ((𝐵𝐴) / 2)) = 𝐵 ∧ (((𝐵 + 𝐴) / 2) − ((𝐵𝐴) / 2)) = 𝐴))
1817simprd 498 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2) − ((𝐵𝐴) / 2)) = 𝐴)
1917simpld 497 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2) + ((𝐵𝐴) / 2)) = 𝐵)
2018, 19oveq12d 7151 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐵 + 𝐴) / 2) − ((𝐵𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵𝐴) / 2))) = (𝐴(,)𝐵))
219, 15, 203eqtr3rd 2864 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵𝐴) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   × cxp 5529  cres 5533  ccom 5535  cfv 6331  (class class class)co 7133  cc 10513  cr 10514   + caddc 10518  cmin 10848   / cdiv 11275  2c2 11671  (,)cioo 12717  abscabs 14573  ballcbl 20508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-z 11961  df-uz 12223  df-rp 12369  df-xadd 12487  df-ioo 12721  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516
This theorem is referenced by:  ioo2blex  23378
  Copyright terms: Public domain W3C validator