Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioo2bl | Structured version Visualization version GIF version |
Description: An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
remet.1 | ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
Ref | Expression |
---|---|
ioo2bl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdcl 10938 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 + 𝐴) ∈ ℝ) | |
2 | 1 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 𝐴) ∈ ℝ) |
3 | 2 | rehalfcld 12203 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝐴) / 2) ∈ ℝ) |
4 | resubcl 11268 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
5 | 4 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
6 | 5 | rehalfcld 12203 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 − 𝐴) / 2) ∈ ℝ) |
7 | remet.1 | . . . 4 ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
8 | 7 | bl2ioo 23936 | . . 3 ⊢ ((((𝐵 + 𝐴) / 2) ∈ ℝ ∧ ((𝐵 − 𝐴) / 2) ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2)) = ((((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)))) |
9 | 3, 6, 8 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2)) = ((((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)))) |
10 | recn 10945 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
11 | recn 10945 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
12 | addcom 11144 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) | |
13 | 10, 11, 12 | syl2anr 596 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
14 | 13 | oveq1d 7283 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝐴) / 2) = ((𝐴 + 𝐵) / 2)) |
15 | 14 | oveq1d 7283 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2)) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
16 | halfaddsub 12189 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)) = 𝐵 ∧ (((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2)) = 𝐴)) | |
17 | 10, 11, 16 | syl2anr 596 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)) = 𝐵 ∧ (((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2)) = 𝐴)) |
18 | 17 | simprd 495 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2)) = 𝐴) |
19 | 17 | simpld 494 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)) = 𝐵) |
20 | 18, 19 | oveq12d 7286 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2))) = (𝐴(,)𝐵)) |
21 | 9, 15, 20 | 3eqtr3rd 2788 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 × cxp 5586 ↾ cres 5590 ∘ ccom 5592 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 ℝcr 10854 + caddc 10858 − cmin 11188 / cdiv 11615 2c2 12011 (,)cioo 13061 abscabs 14926 ballcbl 20565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-xadd 12831 df-ioo 13065 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 |
This theorem is referenced by: ioo2blex 23938 |
Copyright terms: Public domain | W3C validator |