Proof of Theorem addsin
| Step | Hyp | Ref
| Expression |
| 1 | | addcl 11211 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| 2 | 1 | halfcld 12486 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
| 3 | 2 | sincld 16148 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(sin‘((𝐴 + 𝐵) / 2)) ∈
ℂ) |
| 4 | | subcl 11481 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
| 5 | 4 | halfcld 12486 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) / 2) ∈ ℂ) |
| 6 | 5 | coscld 16149 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(cos‘((𝐴 −
𝐵) / 2)) ∈
ℂ) |
| 7 | 3, 6 | mulcld 11255 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((sin‘((𝐴 + 𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) / 2))) ∈
ℂ) |
| 8 | 7 | 2timesd 12484 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· ((sin‘((𝐴 +
𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) / 2)))) =
(((sin‘((𝐴 + 𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) / 2))) +
((sin‘((𝐴 + 𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) /
2))))) |
| 9 | | sinadd 16182 |
. . . . 5
⊢ ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴 − 𝐵) / 2) ∈ ℂ) →
(sin‘(((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) = (((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))) + ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) |
| 10 | 2, 5, 9 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(sin‘(((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) = (((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))) + ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) |
| 11 | | sinsub 16186 |
. . . . 5
⊢ ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴 − 𝐵) / 2) ∈ ℂ) →
(sin‘(((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2))) = (((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))) − ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) |
| 12 | 2, 5, 11 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(sin‘(((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2))) = (((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))) − ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) |
| 13 | 10, 12 | oveq12d 7423 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((sin‘(((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) + (sin‘(((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2)))) = ((((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))) + ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2)))) + (((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))) − ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2)))))) |
| 14 | 2 | coscld 16149 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(cos‘((𝐴 + 𝐵) / 2)) ∈
ℂ) |
| 15 | 5 | sincld 16148 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(sin‘((𝐴 −
𝐵) / 2)) ∈
ℂ) |
| 16 | 14, 15 | mulcld 11255 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((cos‘((𝐴 + 𝐵) / 2)) ·
(sin‘((𝐴 −
𝐵) / 2))) ∈
ℂ) |
| 17 | 7, 16, 7 | ppncand 11634 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((((sin‘((𝐴 + 𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) / 2))) +
((cos‘((𝐴 + 𝐵) / 2)) ·
(sin‘((𝐴 −
𝐵) / 2)))) +
(((sin‘((𝐴 + 𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) / 2))) −
((cos‘((𝐴 + 𝐵) / 2)) ·
(sin‘((𝐴 −
𝐵) / 2))))) =
(((sin‘((𝐴 + 𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) / 2))) +
((sin‘((𝐴 + 𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) /
2))))) |
| 18 | 13, 17 | eqtrd 2770 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((sin‘(((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) + (sin‘(((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2)))) = (((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))) + ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) |
| 19 | | halfaddsub 12474 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2)) = 𝐵)) |
| 20 | 19 | simpld 494 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2)) = 𝐴) |
| 21 | 20 | fveq2d 6880 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(sin‘(((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) = (sin‘𝐴)) |
| 22 | 19 | simprd 495 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2)) = 𝐵) |
| 23 | 22 | fveq2d 6880 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(sin‘(((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2))) = (sin‘𝐵)) |
| 24 | 21, 23 | oveq12d 7423 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((sin‘(((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) + (sin‘(((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2)))) = ((sin‘𝐴) + (sin‘𝐵))) |
| 25 | 8, 18, 24 | 3eqtr2rd 2777 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((sin‘𝐴) +
(sin‘𝐵)) = (2
· ((sin‘((𝐴 +
𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) /
2))))) |