MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsin Structured version   Visualization version   GIF version

Theorem subsin 16077
Description: Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.)
Assertion
Ref Expression
subsin ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))

Proof of Theorem subsin
StepHypRef Expression
1 halfaddsubcl 12350 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ))
2 coscl 16033 . . . . 5 (((𝐴 + 𝐵) / 2) ∈ ℂ → (cos‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
3 sincl 16032 . . . . 5 (((𝐴𝐵) / 2) ∈ ℂ → (sin‘((𝐴𝐵) / 2)) ∈ ℂ)
4 mulcl 11087 . . . . 5 (((cos‘((𝐴 + 𝐵) / 2)) ∈ ℂ ∧ (sin‘((𝐴𝐵) / 2)) ∈ ℂ) → ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) ∈ ℂ)
52, 3, 4syl2an 596 . . . 4 ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ) → ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) ∈ ℂ)
61, 5syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) ∈ ℂ)
762timesd 12361 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))) = (((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) + ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
8 sinadd 16070 . . . . 5 ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ) → (sin‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2))) = (((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) + ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
9 sinsub 16074 . . . . 5 ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ) → (sin‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2))) = (((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) − ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
108, 9oveq12d 7364 . . . 4 ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ) → ((sin‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2))) − (sin‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))) = ((((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) + ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))) − (((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) − ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))))))
111, 10syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2))) − (sin‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))) = ((((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) + ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))) − (((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) − ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))))))
12 sincl 16032 . . . . . 6 (((𝐴 + 𝐵) / 2) ∈ ℂ → (sin‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
13 coscl 16033 . . . . . 6 (((𝐴𝐵) / 2) ∈ ℂ → (cos‘((𝐴𝐵) / 2)) ∈ ℂ)
14 mulcl 11087 . . . . . 6 (((sin‘((𝐴 + 𝐵) / 2)) ∈ ℂ ∧ (cos‘((𝐴𝐵) / 2)) ∈ ℂ) → ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) ∈ ℂ)
1512, 13, 14syl2an 596 . . . . 5 ((((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ) → ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) ∈ ℂ)
161, 15syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) ∈ ℂ)
1716, 6, 6pnncand 11508 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) + ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))) − (((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2))) − ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))))) = (((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) + ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
1811, 17eqtrd 2766 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2))) − (sin‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))) = (((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2))) + ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
19 halfaddsub 12351 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵))
2019simpld 494 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴)
2120fveq2d 6826 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2))) = (sin‘𝐴))
2219simprd 495 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵)
2322fveq2d 6826 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2))) = (sin‘𝐵))
2421, 23oveq12d 7364 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘(((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2))) − (sin‘(((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))) = ((sin‘𝐴) − (sin‘𝐵)))
257, 18, 243eqtr2rd 2773 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cc 11001   + caddc 11006   · cmul 11008  cmin 11341   / cdiv 11771  2c2 12177  sincsin 15967  cosccos 15968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-ico 13248  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator