MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iihalf1 Structured version   Visualization version   GIF version

Theorem iihalf1 23250
Description: Map the first half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iihalf1 (𝑋 ∈ (0[,](1 / 2)) → (2 · 𝑋) ∈ (0[,]1))

Proof of Theorem iihalf1
StepHypRef Expression
1 2re 11512 . . . . 5 2 ∈ ℝ
2 remulcl 10418 . . . . 5 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
31, 2mpan 677 . . . 4 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
433ad2ant1 1113 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → (2 · 𝑋) ∈ ℝ)
5 0le2 11547 . . . . 5 0 ≤ 2
6 mulge0 10957 . . . . 5 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋)) → 0 ≤ (2 · 𝑋))
71, 5, 6mpanl12 689 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → 0 ≤ (2 · 𝑋))
873adant3 1112 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → 0 ≤ (2 · 𝑋))
9 1re 10437 . . . . . 6 1 ∈ ℝ
10 2pos 11548 . . . . . . 7 0 < 2
111, 10pm3.2i 463 . . . . . 6 (2 ∈ ℝ ∧ 0 < 2)
12 lemuldiv2 11320 . . . . . 6 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑋) ≤ 1 ↔ 𝑋 ≤ (1 / 2)))
139, 11, 12mp3an23 1432 . . . . 5 (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ 1 ↔ 𝑋 ≤ (1 / 2)))
1413biimpar 470 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 ≤ (1 / 2)) → (2 · 𝑋) ≤ 1)
15143adant2 1111 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → (2 · 𝑋) ≤ 1)
164, 8, 153jca 1108 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → ((2 · 𝑋) ∈ ℝ ∧ 0 ≤ (2 · 𝑋) ∧ (2 · 𝑋) ≤ 1))
17 0re 10439 . . 3 0 ∈ ℝ
18 halfre 11659 . . 3 (1 / 2) ∈ ℝ
1917, 18elicc2i 12616 . 2 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)))
2017, 9elicc2i 12616 . 2 ((2 · 𝑋) ∈ (0[,]1) ↔ ((2 · 𝑋) ∈ ℝ ∧ 0 ≤ (2 · 𝑋) ∧ (2 · 𝑋) ≤ 1))
2116, 19, 203imtr4i 284 1 (𝑋 ∈ (0[,](1 / 2)) → (2 · 𝑋) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068  wcel 2050   class class class wbr 4925  (class class class)co 6974  cr 10332  0cc0 10333  1c1 10334   · cmul 10338   < clt 10472  cle 10473   / cdiv 11096  2c2 11493  [,]cicc 12555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-po 5322  df-so 5323  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-2 11501  df-icc 12559
This theorem is referenced by:  iihalf1cn  23251  phtpycc  23310  copco  23337  pcohtpylem  23338  pcopt  23341  pcopt2  23342  pcorevlem  23345
  Copyright terms: Public domain W3C validator