Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iihalf1 | Structured version Visualization version GIF version |
Description: Map the first half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
iihalf1 | ⊢ (𝑋 ∈ (0[,](1 / 2)) → (2 · 𝑋) ∈ (0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12153 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | remulcl 11062 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ) | |
3 | 1, 2 | mpan 688 | . . . 4 ⊢ (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ) |
4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) → (2 · 𝑋) ∈ ℝ) |
5 | 0le2 12181 | . . . . 5 ⊢ 0 ≤ 2 | |
6 | mulge0 11599 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋)) → 0 ≤ (2 · 𝑋)) | |
7 | 1, 5, 6 | mpanl12 700 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → 0 ≤ (2 · 𝑋)) |
8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) → 0 ≤ (2 · 𝑋)) |
9 | 1re 11081 | . . . . . 6 ⊢ 1 ∈ ℝ | |
10 | 2pos 12182 | . . . . . . 7 ⊢ 0 < 2 | |
11 | 1, 10 | pm3.2i 472 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
12 | lemuldiv2 11962 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑋) ≤ 1 ↔ 𝑋 ≤ (1 / 2))) | |
13 | 9, 11, 12 | mp3an23 1453 | . . . . 5 ⊢ (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ 1 ↔ 𝑋 ≤ (1 / 2))) |
14 | 13 | biimpar 479 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑋 ≤ (1 / 2)) → (2 · 𝑋) ≤ 1) |
15 | 14 | 3adant2 1131 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) → (2 · 𝑋) ≤ 1) |
16 | 4, 8, 15 | 3jca 1128 | . 2 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) → ((2 · 𝑋) ∈ ℝ ∧ 0 ≤ (2 · 𝑋) ∧ (2 · 𝑋) ≤ 1)) |
17 | 0re 11083 | . . 3 ⊢ 0 ∈ ℝ | |
18 | halfre 12293 | . . 3 ⊢ (1 / 2) ∈ ℝ | |
19 | 17, 18 | elicc2i 13251 | . 2 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2))) |
20 | 17, 9 | elicc2i 13251 | . 2 ⊢ ((2 · 𝑋) ∈ (0[,]1) ↔ ((2 · 𝑋) ∈ ℝ ∧ 0 ≤ (2 · 𝑋) ∧ (2 · 𝑋) ≤ 1)) |
21 | 16, 19, 20 | 3imtr4i 292 | 1 ⊢ (𝑋 ∈ (0[,](1 / 2)) → (2 · 𝑋) ∈ (0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5097 (class class class)co 7342 ℝcr 10976 0cc0 10977 1c1 10978 · cmul 10982 < clt 11115 ≤ cle 11116 / cdiv 11738 2c2 12134 [,]cicc 13188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-2 12142 df-icc 13192 |
This theorem is referenced by: iihalf1cn 24201 phtpycc 24260 copco 24287 pcohtpylem 24288 pcopt 24291 pcopt2 24292 pcorevlem 24295 |
Copyright terms: Public domain | W3C validator |