MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iihalf1 Structured version   Visualization version   GIF version

Theorem iihalf1 24200
Description: Map the first half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iihalf1 (𝑋 ∈ (0[,](1 / 2)) → (2 · 𝑋) ∈ (0[,]1))

Proof of Theorem iihalf1
StepHypRef Expression
1 2re 12153 . . . . 5 2 ∈ ℝ
2 remulcl 11062 . . . . 5 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
31, 2mpan 688 . . . 4 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
433ad2ant1 1133 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → (2 · 𝑋) ∈ ℝ)
5 0le2 12181 . . . . 5 0 ≤ 2
6 mulge0 11599 . . . . 5 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋)) → 0 ≤ (2 · 𝑋))
71, 5, 6mpanl12 700 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → 0 ≤ (2 · 𝑋))
873adant3 1132 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → 0 ≤ (2 · 𝑋))
9 1re 11081 . . . . . 6 1 ∈ ℝ
10 2pos 12182 . . . . . . 7 0 < 2
111, 10pm3.2i 472 . . . . . 6 (2 ∈ ℝ ∧ 0 < 2)
12 lemuldiv2 11962 . . . . . 6 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑋) ≤ 1 ↔ 𝑋 ≤ (1 / 2)))
139, 11, 12mp3an23 1453 . . . . 5 (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ 1 ↔ 𝑋 ≤ (1 / 2)))
1413biimpar 479 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 ≤ (1 / 2)) → (2 · 𝑋) ≤ 1)
15143adant2 1131 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → (2 · 𝑋) ≤ 1)
164, 8, 153jca 1128 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → ((2 · 𝑋) ∈ ℝ ∧ 0 ≤ (2 · 𝑋) ∧ (2 · 𝑋) ≤ 1))
17 0re 11083 . . 3 0 ∈ ℝ
18 halfre 12293 . . 3 (1 / 2) ∈ ℝ
1917, 18elicc2i 13251 . 2 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)))
2017, 9elicc2i 13251 . 2 ((2 · 𝑋) ∈ (0[,]1) ↔ ((2 · 𝑋) ∈ ℝ ∧ 0 ≤ (2 · 𝑋) ∧ (2 · 𝑋) ≤ 1))
2116, 19, 203imtr4i 292 1 (𝑋 ∈ (0[,](1 / 2)) → (2 · 𝑋) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087  wcel 2106   class class class wbr 5097  (class class class)co 7342  cr 10976  0cc0 10977  1c1 10978   · cmul 10982   < clt 11115  cle 11116   / cdiv 11738  2c2 12134  [,]cicc 13188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-po 5537  df-so 5538  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-2 12142  df-icc 13192
This theorem is referenced by:  iihalf1cn  24201  phtpycc  24260  copco  24287  pcohtpylem  24288  pcopt  24291  pcopt2  24292  pcorevlem  24295
  Copyright terms: Public domain W3C validator