| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iihalf1 | Structured version Visualization version GIF version | ||
| Description: Map the first half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| iihalf1 | ⊢ (𝑋 ∈ (0[,](1 / 2)) → (2 · 𝑋) ∈ (0[,]1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12260 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | remulcl 11153 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ) | |
| 3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ) |
| 4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) → (2 · 𝑋) ∈ ℝ) |
| 5 | 0le2 12288 | . . . . 5 ⊢ 0 ≤ 2 | |
| 6 | mulge0 11696 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋)) → 0 ≤ (2 · 𝑋)) | |
| 7 | 1, 5, 6 | mpanl12 702 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → 0 ≤ (2 · 𝑋)) |
| 8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) → 0 ≤ (2 · 𝑋)) |
| 9 | 1re 11174 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 10 | 2pos 12289 | . . . . . . 7 ⊢ 0 < 2 | |
| 11 | 1, 10 | pm3.2i 470 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 12 | lemuldiv2 12064 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑋) ≤ 1 ↔ 𝑋 ≤ (1 / 2))) | |
| 13 | 9, 11, 12 | mp3an23 1455 | . . . . 5 ⊢ (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ 1 ↔ 𝑋 ≤ (1 / 2))) |
| 14 | 13 | biimpar 477 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑋 ≤ (1 / 2)) → (2 · 𝑋) ≤ 1) |
| 15 | 14 | 3adant2 1131 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) → (2 · 𝑋) ≤ 1) |
| 16 | 4, 8, 15 | 3jca 1128 | . 2 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) → ((2 · 𝑋) ∈ ℝ ∧ 0 ≤ (2 · 𝑋) ∧ (2 · 𝑋) ≤ 1)) |
| 17 | 0re 11176 | . . 3 ⊢ 0 ∈ ℝ | |
| 18 | halfre 12395 | . . 3 ⊢ (1 / 2) ∈ ℝ | |
| 19 | 17, 18 | elicc2i 13373 | . 2 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2))) |
| 20 | 17, 9 | elicc2i 13373 | . 2 ⊢ ((2 · 𝑋) ∈ (0[,]1) ↔ ((2 · 𝑋) ∈ ℝ ∧ 0 ≤ (2 · 𝑋) ∧ (2 · 𝑋) ≤ 1)) |
| 21 | 16, 19, 20 | 3imtr4i 292 | 1 ⊢ (𝑋 ∈ (0[,](1 / 2)) → (2 · 𝑋) ∈ (0[,]1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 ≤ cle 11209 / cdiv 11835 2c2 12241 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-icc 13313 |
| This theorem is referenced by: iihalf1cn 24826 iihalf1cnOLD 24827 phtpycc 24890 copco 24918 pcohtpylem 24919 pcopt 24922 pcopt2 24923 pcorevlem 24926 |
| Copyright terms: Public domain | W3C validator |