MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem3a Structured version   Visualization version   GIF version

Theorem asinlem3a 26832
Description: Lemma for asinlem3 26833. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem3a ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))

Proof of Theorem asinlem3a
StepHypRef Expression
1 imcl 15130 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
21adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℑ‘𝐴) ∈ ℝ)
32renegcld 11664 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → -(ℑ‘𝐴) ∈ ℝ)
4 ax-1cn 11187 . . . . . 6 1 ∈ ℂ
5 sqcl 14136 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
65adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (𝐴↑2) ∈ ℂ)
7 subcl 11481 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
84, 6, 7sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (1 − (𝐴↑2)) ∈ ℂ)
98sqrtcld 15456 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (√‘(1 − (𝐴↑2))) ∈ ℂ)
109recld 15213 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(√‘(1 − (𝐴↑2)))) ∈ ℝ)
111le0neg1d 11808 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℑ‘𝐴)))
1211biimpa 476 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ -(ℑ‘𝐴))
138sqrtrege0d 15457 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘(√‘(1 − (𝐴↑2)))))
143, 10, 12, 13addge0d 11813 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2))))))
15 ax-icn 11188 . . . . 5 i ∈ ℂ
16 simpl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 𝐴 ∈ ℂ)
17 mulcl 11213 . . . . 5 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1815, 16, 17sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (i · 𝐴) ∈ ℂ)
1918, 9readdd 15233 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((ℜ‘(i · 𝐴)) + (ℜ‘(√‘(1 − (𝐴↑2))))))
20 negicn 11483 . . . . . . 7 -i ∈ ℂ
21 mulcl 11213 . . . . . . 7 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
2220, 16, 21sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (-i · 𝐴) ∈ ℂ)
2322renegd 15228 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘-(-i · 𝐴)) = -(ℜ‘(-i · 𝐴)))
2415negnegi 11553 . . . . . . . 8 --i = i
2524oveq1i 7415 . . . . . . 7 (--i · 𝐴) = (i · 𝐴)
26 mulneg1 11673 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (--i · 𝐴) = -(-i · 𝐴))
2720, 16, 26sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (--i · 𝐴) = -(-i · 𝐴))
2825, 27eqtr3id 2784 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (i · 𝐴) = -(-i · 𝐴))
2928fveq2d 6880 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(i · 𝐴)) = (ℜ‘-(-i · 𝐴)))
30 imre 15127 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
3130adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
3231negeqd 11476 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → -(ℑ‘𝐴) = -(ℜ‘(-i · 𝐴)))
3323, 29, 323eqtr4d 2780 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(i · 𝐴)) = -(ℑ‘𝐴))
3433oveq1d 7420 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → ((ℜ‘(i · 𝐴)) + (ℜ‘(√‘(1 − (𝐴↑2))))) = (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2))))))
3519, 34eqtrd 2770 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2))))))
3614, 35breqtrrd 5147 1 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130  ici 11131   + caddc 11132   · cmul 11134  cle 11270  cmin 11466  -cneg 11467  2c2 12295  cexp 14079  cre 15116  cim 15117  csqrt 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255
This theorem is referenced by:  asinlem3  26833
  Copyright terms: Public domain W3C validator