Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asinlem3a | Structured version Visualization version GIF version |
Description: Lemma for asinlem3 25926. (Contributed by Mario Carneiro, 1-Apr-2015.) |
Ref | Expression |
---|---|
asinlem3a | ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imcl 14750 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℑ‘𝐴) ∈ ℝ) |
3 | 2 | renegcld 11332 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → -(ℑ‘𝐴) ∈ ℝ) |
4 | ax-1cn 10860 | . . . . . 6 ⊢ 1 ∈ ℂ | |
5 | sqcl 13766 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (𝐴↑2) ∈ ℂ) |
7 | subcl 11150 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
8 | 4, 6, 7 | sylancr 586 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (1 − (𝐴↑2)) ∈ ℂ) |
9 | 8 | sqrtcld 15077 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (√‘(1 − (𝐴↑2))) ∈ ℂ) |
10 | 9 | recld 14833 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(√‘(1 − (𝐴↑2)))) ∈ ℝ) |
11 | 1 | le0neg1d 11476 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℑ‘𝐴))) |
12 | 11 | biimpa 476 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ -(ℑ‘𝐴)) |
13 | 8 | sqrtrege0d 15078 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘(√‘(1 − (𝐴↑2))))) |
14 | 3, 10, 12, 13 | addge0d 11481 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2)))))) |
15 | ax-icn 10861 | . . . . 5 ⊢ i ∈ ℂ | |
16 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 𝐴 ∈ ℂ) | |
17 | mulcl 10886 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
18 | 15, 16, 17 | sylancr 586 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (i · 𝐴) ∈ ℂ) |
19 | 18, 9 | readdd 14853 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((ℜ‘(i · 𝐴)) + (ℜ‘(√‘(1 − (𝐴↑2)))))) |
20 | negicn 11152 | . . . . . . 7 ⊢ -i ∈ ℂ | |
21 | mulcl 10886 | . . . . . . 7 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ) | |
22 | 20, 16, 21 | sylancr 586 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (-i · 𝐴) ∈ ℂ) |
23 | 22 | renegd 14848 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘-(-i · 𝐴)) = -(ℜ‘(-i · 𝐴))) |
24 | 15 | negnegi 11221 | . . . . . . . 8 ⊢ --i = i |
25 | 24 | oveq1i 7265 | . . . . . . 7 ⊢ (--i · 𝐴) = (i · 𝐴) |
26 | mulneg1 11341 | . . . . . . . 8 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (--i · 𝐴) = -(-i · 𝐴)) | |
27 | 20, 16, 26 | sylancr 586 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (--i · 𝐴) = -(-i · 𝐴)) |
28 | 25, 27 | eqtr3id 2793 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (i · 𝐴) = -(-i · 𝐴)) |
29 | 28 | fveq2d 6760 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(i · 𝐴)) = (ℜ‘-(-i · 𝐴))) |
30 | imre 14747 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) | |
31 | 30 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) |
32 | 31 | negeqd 11145 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → -(ℑ‘𝐴) = -(ℜ‘(-i · 𝐴))) |
33 | 23, 29, 32 | 3eqtr4d 2788 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(i · 𝐴)) = -(ℑ‘𝐴)) |
34 | 33 | oveq1d 7270 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → ((ℜ‘(i · 𝐴)) + (ℜ‘(√‘(1 − (𝐴↑2))))) = (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2)))))) |
35 | 19, 34 | eqtrd 2778 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2)))))) |
36 | 14, 35 | breqtrrd 5098 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 ≤ cle 10941 − cmin 11135 -cneg 11136 2c2 11958 ↑cexp 13710 ℜcre 14736 ℑcim 14737 √csqrt 14872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: asinlem3 25926 |
Copyright terms: Public domain | W3C validator |