MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem3a Structured version   Visualization version   GIF version

Theorem asinlem3a 26787
Description: Lemma for asinlem3 26788. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem3a ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))

Proof of Theorem asinlem3a
StepHypRef Expression
1 imcl 15084 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
21adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℑ‘𝐴) ∈ ℝ)
32renegcld 11612 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → -(ℑ‘𝐴) ∈ ℝ)
4 ax-1cn 11133 . . . . . 6 1 ∈ ℂ
5 sqcl 14090 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
65adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (𝐴↑2) ∈ ℂ)
7 subcl 11427 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
84, 6, 7sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (1 − (𝐴↑2)) ∈ ℂ)
98sqrtcld 15413 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (√‘(1 − (𝐴↑2))) ∈ ℂ)
109recld 15167 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(√‘(1 − (𝐴↑2)))) ∈ ℝ)
111le0neg1d 11756 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℑ‘𝐴)))
1211biimpa 476 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ -(ℑ‘𝐴))
138sqrtrege0d 15414 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘(√‘(1 − (𝐴↑2)))))
143, 10, 12, 13addge0d 11761 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2))))))
15 ax-icn 11134 . . . . 5 i ∈ ℂ
16 simpl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 𝐴 ∈ ℂ)
17 mulcl 11159 . . . . 5 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1815, 16, 17sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (i · 𝐴) ∈ ℂ)
1918, 9readdd 15187 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((ℜ‘(i · 𝐴)) + (ℜ‘(√‘(1 − (𝐴↑2))))))
20 negicn 11429 . . . . . . 7 -i ∈ ℂ
21 mulcl 11159 . . . . . . 7 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
2220, 16, 21sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (-i · 𝐴) ∈ ℂ)
2322renegd 15182 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘-(-i · 𝐴)) = -(ℜ‘(-i · 𝐴)))
2415negnegi 11499 . . . . . . . 8 --i = i
2524oveq1i 7400 . . . . . . 7 (--i · 𝐴) = (i · 𝐴)
26 mulneg1 11621 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (--i · 𝐴) = -(-i · 𝐴))
2720, 16, 26sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (--i · 𝐴) = -(-i · 𝐴))
2825, 27eqtr3id 2779 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (i · 𝐴) = -(-i · 𝐴))
2928fveq2d 6865 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(i · 𝐴)) = (ℜ‘-(-i · 𝐴)))
30 imre 15081 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
3130adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
3231negeqd 11422 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → -(ℑ‘𝐴) = -(ℜ‘(-i · 𝐴)))
3323, 29, 323eqtr4d 2775 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(i · 𝐴)) = -(ℑ‘𝐴))
3433oveq1d 7405 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → ((ℜ‘(i · 𝐴)) + (ℜ‘(√‘(1 − (𝐴↑2))))) = (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2))))))
3519, 34eqtrd 2765 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2))))))
3614, 35breqtrrd 5138 1 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  -cneg 11413  2c2 12248  cexp 14033  cre 15070  cim 15071  csqrt 15206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  asinlem3  26788
  Copyright terms: Public domain W3C validator