Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asinlem3a | Structured version Visualization version GIF version |
Description: Lemma for asinlem3 25549. (Contributed by Mario Carneiro, 1-Apr-2015.) |
Ref | Expression |
---|---|
asinlem3a | ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imcl 14511 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
2 | 1 | adantr 485 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℑ‘𝐴) ∈ ℝ) |
3 | 2 | renegcld 11098 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → -(ℑ‘𝐴) ∈ ℝ) |
4 | ax-1cn 10626 | . . . . . 6 ⊢ 1 ∈ ℂ | |
5 | sqcl 13527 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
6 | 5 | adantr 485 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (𝐴↑2) ∈ ℂ) |
7 | subcl 10916 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
8 | 4, 6, 7 | sylancr 591 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (1 − (𝐴↑2)) ∈ ℂ) |
9 | 8 | sqrtcld 14838 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (√‘(1 − (𝐴↑2))) ∈ ℂ) |
10 | 9 | recld 14594 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(√‘(1 − (𝐴↑2)))) ∈ ℝ) |
11 | 1 | le0neg1d 11242 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℑ‘𝐴))) |
12 | 11 | biimpa 481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ -(ℑ‘𝐴)) |
13 | 8 | sqrtrege0d 14839 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘(√‘(1 − (𝐴↑2))))) |
14 | 3, 10, 12, 13 | addge0d 11247 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2)))))) |
15 | ax-icn 10627 | . . . . 5 ⊢ i ∈ ℂ | |
16 | simpl 487 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 𝐴 ∈ ℂ) | |
17 | mulcl 10652 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
18 | 15, 16, 17 | sylancr 591 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (i · 𝐴) ∈ ℂ) |
19 | 18, 9 | readdd 14614 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((ℜ‘(i · 𝐴)) + (ℜ‘(√‘(1 − (𝐴↑2)))))) |
20 | negicn 10918 | . . . . . . 7 ⊢ -i ∈ ℂ | |
21 | mulcl 10652 | . . . . . . 7 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ) | |
22 | 20, 16, 21 | sylancr 591 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (-i · 𝐴) ∈ ℂ) |
23 | 22 | renegd 14609 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘-(-i · 𝐴)) = -(ℜ‘(-i · 𝐴))) |
24 | 15 | negnegi 10987 | . . . . . . . 8 ⊢ --i = i |
25 | 24 | oveq1i 7161 | . . . . . . 7 ⊢ (--i · 𝐴) = (i · 𝐴) |
26 | mulneg1 11107 | . . . . . . . 8 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (--i · 𝐴) = -(-i · 𝐴)) | |
27 | 20, 16, 26 | sylancr 591 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (--i · 𝐴) = -(-i · 𝐴)) |
28 | 25, 27 | syl5eqr 2808 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (i · 𝐴) = -(-i · 𝐴)) |
29 | 28 | fveq2d 6663 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(i · 𝐴)) = (ℜ‘-(-i · 𝐴))) |
30 | imre 14508 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) | |
31 | 30 | adantr 485 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) |
32 | 31 | negeqd 10911 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → -(ℑ‘𝐴) = -(ℜ‘(-i · 𝐴))) |
33 | 23, 29, 32 | 3eqtr4d 2804 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(i · 𝐴)) = -(ℑ‘𝐴)) |
34 | 33 | oveq1d 7166 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → ((ℜ‘(i · 𝐴)) + (ℜ‘(√‘(1 − (𝐴↑2))))) = (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2)))))) |
35 | 19, 34 | eqtrd 2794 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2)))))) |
36 | 14, 35 | breqtrrd 5061 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 ℂcc 10566 ℝcr 10567 0cc0 10568 1c1 10569 ici 10570 + caddc 10571 · cmul 10573 ≤ cle 10707 − cmin 10901 -cneg 10902 2c2 11722 ↑cexp 13472 ℜcre 14497 ℑcim 14498 √csqrt 14633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-sup 8932 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-n0 11928 df-z 12014 df-uz 12276 df-rp 12424 df-seq 13412 df-exp 13473 df-cj 14499 df-re 14500 df-im 14501 df-sqrt 14635 df-abs 14636 |
This theorem is referenced by: asinlem3 25549 |
Copyright terms: Public domain | W3C validator |