MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem3a Structured version   Visualization version   GIF version

Theorem asinlem3a 25450
Description: Lemma for asinlem3 25451. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem3a ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))

Proof of Theorem asinlem3a
StepHypRef Expression
1 imcl 14472 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
21adantr 483 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℑ‘𝐴) ∈ ℝ)
32renegcld 11069 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → -(ℑ‘𝐴) ∈ ℝ)
4 ax-1cn 10597 . . . . . 6 1 ∈ ℂ
5 sqcl 13487 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
65adantr 483 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (𝐴↑2) ∈ ℂ)
7 subcl 10887 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
84, 6, 7sylancr 589 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (1 − (𝐴↑2)) ∈ ℂ)
98sqrtcld 14799 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (√‘(1 − (𝐴↑2))) ∈ ℂ)
109recld 14555 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(√‘(1 − (𝐴↑2)))) ∈ ℝ)
111le0neg1d 11213 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℑ‘𝐴)))
1211biimpa 479 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ -(ℑ‘𝐴))
138sqrtrege0d 14800 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘(√‘(1 − (𝐴↑2)))))
143, 10, 12, 13addge0d 11218 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2))))))
15 ax-icn 10598 . . . . 5 i ∈ ℂ
16 simpl 485 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 𝐴 ∈ ℂ)
17 mulcl 10623 . . . . 5 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1815, 16, 17sylancr 589 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (i · 𝐴) ∈ ℂ)
1918, 9readdd 14575 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((ℜ‘(i · 𝐴)) + (ℜ‘(√‘(1 − (𝐴↑2))))))
20 negicn 10889 . . . . . . 7 -i ∈ ℂ
21 mulcl 10623 . . . . . . 7 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
2220, 16, 21sylancr 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (-i · 𝐴) ∈ ℂ)
2322renegd 14570 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘-(-i · 𝐴)) = -(ℜ‘(-i · 𝐴)))
2415negnegi 10958 . . . . . . . 8 --i = i
2524oveq1i 7168 . . . . . . 7 (--i · 𝐴) = (i · 𝐴)
26 mulneg1 11078 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (--i · 𝐴) = -(-i · 𝐴))
2720, 16, 26sylancr 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (--i · 𝐴) = -(-i · 𝐴))
2825, 27syl5eqr 2872 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (i · 𝐴) = -(-i · 𝐴))
2928fveq2d 6676 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(i · 𝐴)) = (ℜ‘-(-i · 𝐴)))
30 imre 14469 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
3130adantr 483 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
3231negeqd 10882 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → -(ℑ‘𝐴) = -(ℜ‘(-i · 𝐴)))
3323, 29, 323eqtr4d 2868 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘(i · 𝐴)) = -(ℑ‘𝐴))
3433oveq1d 7173 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → ((ℜ‘(i · 𝐴)) + (ℜ‘(√‘(1 − (𝐴↑2))))) = (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2))))))
3519, 34eqtrd 2858 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = (-(ℑ‘𝐴) + (ℜ‘(√‘(1 − (𝐴↑2))))))
3614, 35breqtrrd 5096 1 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  ici 10541   + caddc 10542   · cmul 10544  cle 10678  cmin 10872  -cneg 10873  2c2 11695  cexp 13432  cre 14458  cim 14459  csqrt 14594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by:  asinlem3  25451
  Copyright terms: Public domain W3C validator