Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pncan2d | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
pncan2d | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | pncan2 11158 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐴) = 𝐵) |
Copyright terms: Public domain | W3C validator |