MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjexp Structured version   Visualization version   GIF version

Theorem cjexp 15189
Description: Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
Assertion
Ref Expression
cjexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))

Proof of Theorem cjexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . 4 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
21fveq2d 6910 . . 3 (𝑗 = 0 → (∗‘(𝐴𝑗)) = (∗‘(𝐴↑0)))
3 oveq2 7439 . . 3 (𝑗 = 0 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑0))
42, 3eqeq12d 2753 . 2 (𝑗 = 0 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0)))
5 oveq2 7439 . . . 4 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65fveq2d 6910 . . 3 (𝑗 = 𝑘 → (∗‘(𝐴𝑗)) = (∗‘(𝐴𝑘)))
7 oveq2 7439 . . 3 (𝑗 = 𝑘 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑘))
86, 7eqeq12d 2753 . 2 (𝑗 = 𝑘 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)))
9 oveq2 7439 . . . 4 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109fveq2d 6910 . . 3 (𝑗 = (𝑘 + 1) → (∗‘(𝐴𝑗)) = (∗‘(𝐴↑(𝑘 + 1))))
11 oveq2 7439 . . 3 (𝑗 = (𝑘 + 1) → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑(𝑘 + 1)))
1210, 11eqeq12d 2753 . 2 (𝑗 = (𝑘 + 1) → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1))))
13 oveq2 7439 . . . 4 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413fveq2d 6910 . . 3 (𝑗 = 𝑁 → (∗‘(𝐴𝑗)) = (∗‘(𝐴𝑁)))
15 oveq2 7439 . . 3 (𝑗 = 𝑁 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑁))
1614, 15eqeq12d 2753 . 2 (𝑗 = 𝑁 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁)))
17 exp0 14106 . . . 4 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
1817fveq2d 6910 . . 3 (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = (∗‘1))
19 cjcl 15144 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
20 exp0 14106 . . . . 5 ((∗‘𝐴) ∈ ℂ → ((∗‘𝐴)↑0) = 1)
21 1re 11261 . . . . . 6 1 ∈ ℝ
22 cjre 15178 . . . . . 6 (1 ∈ ℝ → (∗‘1) = 1)
2321, 22ax-mp 5 . . . . 5 (∗‘1) = 1
2420, 23eqtr4di 2795 . . . 4 ((∗‘𝐴) ∈ ℂ → ((∗‘𝐴)↑0) = (∗‘1))
2519, 24syl 17 . . 3 (𝐴 ∈ ℂ → ((∗‘𝐴)↑0) = (∗‘1))
2618, 25eqtr4d 2780 . 2 (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0))
27 expp1 14109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2827fveq2d 6910 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴↑(𝑘 + 1))) = (∗‘((𝐴𝑘) · 𝐴)))
29 expcl 14120 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
30 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
31 cjmul 15181 . . . . . 6 (((𝐴𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘((𝐴𝑘) · 𝐴)) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3229, 30, 31syl2anc 584 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝐴𝑘) · 𝐴)) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3328, 32eqtrd 2777 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3433adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
35 oveq1 7438 . . . 4 ((∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘) → ((∗‘(𝐴𝑘)) · (∗‘𝐴)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
36 expp1 14109 . . . . . 6 (((∗‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
3719, 36sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
3837eqcomd 2743 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((∗‘𝐴)↑𝑘) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1)))
3935, 38sylan9eqr 2799 . . 3 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → ((∗‘(𝐴𝑘)) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1)))
4034, 39eqtrd 2777 . 2 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))
414, 8, 12, 16, 26, 40nn0indd 12715 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  0cn0 12526  cexp 14102  ccj 15135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140
This theorem is referenced by:  cjexpd  15252  efcj  16128  plycjlem  26316  plyrecj  26321  atandmcj  26952
  Copyright terms: Public domain W3C validator