Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjexp Structured version   Visualization version   GIF version

Theorem cjexp 14504
 Description: Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
Assertion
Ref Expression
cjexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))

Proof of Theorem cjexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7144 . . . 4 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
21fveq2d 6650 . . 3 (𝑗 = 0 → (∗‘(𝐴𝑗)) = (∗‘(𝐴↑0)))
3 oveq2 7144 . . 3 (𝑗 = 0 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑0))
42, 3eqeq12d 2814 . 2 (𝑗 = 0 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0)))
5 oveq2 7144 . . . 4 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65fveq2d 6650 . . 3 (𝑗 = 𝑘 → (∗‘(𝐴𝑗)) = (∗‘(𝐴𝑘)))
7 oveq2 7144 . . 3 (𝑗 = 𝑘 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑘))
86, 7eqeq12d 2814 . 2 (𝑗 = 𝑘 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)))
9 oveq2 7144 . . . 4 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109fveq2d 6650 . . 3 (𝑗 = (𝑘 + 1) → (∗‘(𝐴𝑗)) = (∗‘(𝐴↑(𝑘 + 1))))
11 oveq2 7144 . . 3 (𝑗 = (𝑘 + 1) → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑(𝑘 + 1)))
1210, 11eqeq12d 2814 . 2 (𝑗 = (𝑘 + 1) → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1))))
13 oveq2 7144 . . . 4 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413fveq2d 6650 . . 3 (𝑗 = 𝑁 → (∗‘(𝐴𝑗)) = (∗‘(𝐴𝑁)))
15 oveq2 7144 . . 3 (𝑗 = 𝑁 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑁))
1614, 15eqeq12d 2814 . 2 (𝑗 = 𝑁 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁)))
17 exp0 13432 . . . 4 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
1817fveq2d 6650 . . 3 (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = (∗‘1))
19 cjcl 14459 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
20 exp0 13432 . . . . 5 ((∗‘𝐴) ∈ ℂ → ((∗‘𝐴)↑0) = 1)
21 1re 10633 . . . . . 6 1 ∈ ℝ
22 cjre 14493 . . . . . 6 (1 ∈ ℝ → (∗‘1) = 1)
2321, 22ax-mp 5 . . . . 5 (∗‘1) = 1
2420, 23eqtr4di 2851 . . . 4 ((∗‘𝐴) ∈ ℂ → ((∗‘𝐴)↑0) = (∗‘1))
2519, 24syl 17 . . 3 (𝐴 ∈ ℂ → ((∗‘𝐴)↑0) = (∗‘1))
2618, 25eqtr4d 2836 . 2 (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0))
27 expp1 13435 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2827fveq2d 6650 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴↑(𝑘 + 1))) = (∗‘((𝐴𝑘) · 𝐴)))
29 expcl 13446 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
30 simpl 486 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
31 cjmul 14496 . . . . . 6 (((𝐴𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘((𝐴𝑘) · 𝐴)) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3229, 30, 31syl2anc 587 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝐴𝑘) · 𝐴)) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3328, 32eqtrd 2833 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3433adantr 484 . . 3 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
35 oveq1 7143 . . . 4 ((∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘) → ((∗‘(𝐴𝑘)) · (∗‘𝐴)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
36 expp1 13435 . . . . . 6 (((∗‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
3719, 36sylan 583 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
3837eqcomd 2804 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((∗‘𝐴)↑𝑘) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1)))
3935, 38sylan9eqr 2855 . . 3 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → ((∗‘(𝐴𝑘)) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1)))
4034, 39eqtrd 2833 . 2 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))
414, 8, 12, 16, 26, 40nn0indd 12070 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ‘cfv 6325  (class class class)co 7136  ℂcc 10527  ℝcr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  ℕ0cn0 11888  ↑cexp 13428  ∗ccj 14450 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-n0 11889  df-z 11973  df-uz 12235  df-seq 13368  df-exp 13429  df-cj 14453  df-re 14454  df-im 14455 This theorem is referenced by:  cjexpd  14567  efcj  15440  plycjlem  24883  plyrecj  24886  atandmcj  25505
 Copyright terms: Public domain W3C validator