MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjexp Structured version   Visualization version   GIF version

Theorem cjexp 14175
Description: Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
Assertion
Ref Expression
cjexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))

Proof of Theorem cjexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6850 . . . . . 6 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
21fveq2d 6379 . . . . 5 (𝑗 = 0 → (∗‘(𝐴𝑗)) = (∗‘(𝐴↑0)))
3 oveq2 6850 . . . . 5 (𝑗 = 0 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑0))
42, 3eqeq12d 2780 . . . 4 (𝑗 = 0 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0)))
54imbi2d 331 . . 3 (𝑗 = 0 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0))))
6 oveq2 6850 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
76fveq2d 6379 . . . . 5 (𝑗 = 𝑘 → (∗‘(𝐴𝑗)) = (∗‘(𝐴𝑘)))
8 oveq2 6850 . . . . 5 (𝑗 = 𝑘 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑘))
97, 8eqeq12d 2780 . . . 4 (𝑗 = 𝑘 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)))
109imbi2d 331 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘))))
11 oveq2 6850 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
1211fveq2d 6379 . . . . 5 (𝑗 = (𝑘 + 1) → (∗‘(𝐴𝑗)) = (∗‘(𝐴↑(𝑘 + 1))))
13 oveq2 6850 . . . . 5 (𝑗 = (𝑘 + 1) → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑(𝑘 + 1)))
1412, 13eqeq12d 2780 . . . 4 (𝑗 = (𝑘 + 1) → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1))))
1514imbi2d 331 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
16 oveq2 6850 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1716fveq2d 6379 . . . . 5 (𝑗 = 𝑁 → (∗‘(𝐴𝑗)) = (∗‘(𝐴𝑁)))
18 oveq2 6850 . . . . 5 (𝑗 = 𝑁 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑁))
1917, 18eqeq12d 2780 . . . 4 (𝑗 = 𝑁 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁)))
2019imbi2d 331 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))))
21 exp0 13071 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2221fveq2d 6379 . . . 4 (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = (∗‘1))
23 cjcl 14130 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
24 exp0 13071 . . . . . 6 ((∗‘𝐴) ∈ ℂ → ((∗‘𝐴)↑0) = 1)
25 1re 10293 . . . . . . 7 1 ∈ ℝ
26 cjre 14164 . . . . . . 7 (1 ∈ ℝ → (∗‘1) = 1)
2725, 26ax-mp 5 . . . . . 6 (∗‘1) = 1
2824, 27syl6eqr 2817 . . . . 5 ((∗‘𝐴) ∈ ℂ → ((∗‘𝐴)↑0) = (∗‘1))
2923, 28syl 17 . . . 4 (𝐴 ∈ ℂ → ((∗‘𝐴)↑0) = (∗‘1))
3022, 29eqtr4d 2802 . . 3 (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0))
31 expp1 13074 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3231fveq2d 6379 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴↑(𝑘 + 1))) = (∗‘((𝐴𝑘) · 𝐴)))
33 expcl 13085 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
34 simpl 474 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
35 cjmul 14167 . . . . . . . . . 10 (((𝐴𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘((𝐴𝑘) · 𝐴)) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3633, 34, 35syl2anc 579 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝐴𝑘) · 𝐴)) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3732, 36eqtrd 2799 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3837adantr 472 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
39 oveq1 6849 . . . . . . . 8 ((∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘) → ((∗‘(𝐴𝑘)) · (∗‘𝐴)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
40 expp1 13074 . . . . . . . . . 10 (((∗‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
4123, 40sylan 575 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
4241eqcomd 2771 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((∗‘𝐴)↑𝑘) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1)))
4339, 42sylan9eqr 2821 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → ((∗‘(𝐴𝑘)) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1)))
4438, 43eqtrd 2799 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))
4544exp31 410 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 → ((∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
4645com12 32 . . . 4 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℂ → ((∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
4746a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (𝐴 ∈ ℂ → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
485, 10, 15, 20, 30, 47nn0ind 11719 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℂ → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁)))
4948impcom 396 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  0cn0 11538  cexp 13067  ccj 14121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126
This theorem is referenced by:  cjexpd  14238  efcj  15104  plycjlem  24323  plyrecj  24326  atandmcj  24927
  Copyright terms: Public domain W3C validator