MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmhm Structured version   Visualization version   GIF version

Theorem expmhm 21477
Description: Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
expmhm.1 𝑁 = (ℂflds0)
expmhm.2 𝑀 = (mulGrp‘ℂfld)
Assertion
Ref Expression
expmhm (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem expmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcl 14130 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
21fmpttd 7149 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ)
3 expadd 14155 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
433expb 1120 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
5 nn0addcl 12588 . . . . . 6 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑦 + 𝑧) ∈ ℕ0)
65adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝑦 + 𝑧) ∈ ℕ0)
7 oveq2 7456 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝐴𝑥) = (𝐴↑(𝑦 + 𝑧)))
8 eqid 2740 . . . . . 6 (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) = (𝑥 ∈ ℕ0 ↦ (𝐴𝑥))
9 ovex 7481 . . . . . 6 (𝐴↑(𝑦 + 𝑧)) ∈ V
107, 8, 9fvmpt 7029 . . . . 5 ((𝑦 + 𝑧) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
116, 10syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
12 oveq2 7456 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
13 ovex 7481 . . . . . . 7 (𝐴𝑦) ∈ V
1412, 8, 13fvmpt 7029 . . . . . 6 (𝑦 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) = (𝐴𝑦))
15 oveq2 7456 . . . . . . 7 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
16 ovex 7481 . . . . . . 7 (𝐴𝑧) ∈ V
1715, 8, 16fvmpt 7029 . . . . . 6 (𝑧 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧) = (𝐴𝑧))
1814, 17oveqan12d 7467 . . . . 5 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
1918adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
204, 11, 193eqtr4d 2790 . . 3 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)))
2120ralrimivva 3208 . 2 (𝐴 ∈ ℂ → ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)))
22 0nn0 12568 . . . 4 0 ∈ ℕ0
23 oveq2 7456 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
24 ovex 7481 . . . . 5 (𝐴↑0) ∈ V
2523, 8, 24fvmpt 7029 . . . 4 (0 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = (𝐴↑0))
2622, 25ax-mp 5 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = (𝐴↑0)
27 exp0 14116 . . 3 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2826, 27eqtrid 2792 . 2 (𝐴 ∈ ℂ → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1)
29 nn0subm 21463 . . . . 5 0 ∈ (SubMnd‘ℂfld)
30 expmhm.1 . . . . . 6 𝑁 = (ℂflds0)
3130submmnd 18848 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → 𝑁 ∈ Mnd)
3229, 31ax-mp 5 . . . 4 𝑁 ∈ Mnd
33 cnring 21426 . . . . 5 fld ∈ Ring
34 expmhm.2 . . . . . 6 𝑀 = (mulGrp‘ℂfld)
3534ringmgp 20266 . . . . 5 (ℂfld ∈ Ring → 𝑀 ∈ Mnd)
3633, 35ax-mp 5 . . . 4 𝑀 ∈ Mnd
3732, 36pm3.2i 470 . . 3 (𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd)
3830submbas 18849 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘𝑁))
3929, 38ax-mp 5 . . . 4 0 = (Base‘𝑁)
40 cnfldbas 21391 . . . . 5 ℂ = (Base‘ℂfld)
4134, 40mgpbas 20167 . . . 4 ℂ = (Base‘𝑀)
42 cnfldadd 21393 . . . . . 6 + = (+g‘ℂfld)
4330, 42ressplusg 17349 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → + = (+g𝑁))
4429, 43ax-mp 5 . . . 4 + = (+g𝑁)
45 cnfldmul 21395 . . . . 5 · = (.r‘ℂfld)
4634, 45mgpplusg 20165 . . . 4 · = (+g𝑀)
47 cnfld0 21428 . . . . . 6 0 = (0g‘ℂfld)
4830, 47subm0 18850 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g𝑁))
4929, 48ax-mp 5 . . . 4 0 = (0g𝑁)
50 cnfld1 21429 . . . . 5 1 = (1r‘ℂfld)
5134, 50ringidval 20210 . . . 4 1 = (0g𝑀)
5239, 41, 44, 46, 49, 51ismhm 18820 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀) ↔ ((𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ ∧ ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1)))
5337, 52mpbiran 708 . 2 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀) ↔ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ ∧ ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1))
542, 21, 28, 53syl3anbrc 1343 1 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  0cn0 12553  cexp 14112  Basecbs 17258  s cress 17287  +gcplusg 17311  0gc0g 17499  Mndcmnd 18772   MndHom cmhm 18816  SubMndcsubmnd 18817  mulGrpcmgp 20161  Ringcrg 20260  fldccnfld 21387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-seq 14053  df-exp 14113  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-cmn 19824  df-mgp 20162  df-ur 20209  df-ring 20262  df-cring 20263  df-cnfld 21388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator