MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmhm Structured version   Visualization version   GIF version

Theorem expmhm 20579
Description: Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
expmhm.1 𝑁 = (ℂflds0)
expmhm.2 𝑀 = (mulGrp‘ℂfld)
Assertion
Ref Expression
expmhm (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem expmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcl 13728 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
21fmpttd 6971 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ)
3 expadd 13753 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
433expb 1118 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
5 nn0addcl 12198 . . . . . 6 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑦 + 𝑧) ∈ ℕ0)
65adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝑦 + 𝑧) ∈ ℕ0)
7 oveq2 7263 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝐴𝑥) = (𝐴↑(𝑦 + 𝑧)))
8 eqid 2738 . . . . . 6 (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) = (𝑥 ∈ ℕ0 ↦ (𝐴𝑥))
9 ovex 7288 . . . . . 6 (𝐴↑(𝑦 + 𝑧)) ∈ V
107, 8, 9fvmpt 6857 . . . . 5 ((𝑦 + 𝑧) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
116, 10syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
12 oveq2 7263 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
13 ovex 7288 . . . . . . 7 (𝐴𝑦) ∈ V
1412, 8, 13fvmpt 6857 . . . . . 6 (𝑦 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) = (𝐴𝑦))
15 oveq2 7263 . . . . . . 7 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
16 ovex 7288 . . . . . . 7 (𝐴𝑧) ∈ V
1715, 8, 16fvmpt 6857 . . . . . 6 (𝑧 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧) = (𝐴𝑧))
1814, 17oveqan12d 7274 . . . . 5 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
1918adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
204, 11, 193eqtr4d 2788 . . 3 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)))
2120ralrimivva 3114 . 2 (𝐴 ∈ ℂ → ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)))
22 0nn0 12178 . . . 4 0 ∈ ℕ0
23 oveq2 7263 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
24 ovex 7288 . . . . 5 (𝐴↑0) ∈ V
2523, 8, 24fvmpt 6857 . . . 4 (0 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = (𝐴↑0))
2622, 25ax-mp 5 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = (𝐴↑0)
27 exp0 13714 . . 3 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2826, 27eqtrid 2790 . 2 (𝐴 ∈ ℂ → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1)
29 nn0subm 20565 . . . . 5 0 ∈ (SubMnd‘ℂfld)
30 expmhm.1 . . . . . 6 𝑁 = (ℂflds0)
3130submmnd 18367 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → 𝑁 ∈ Mnd)
3229, 31ax-mp 5 . . . 4 𝑁 ∈ Mnd
33 cnring 20532 . . . . 5 fld ∈ Ring
34 expmhm.2 . . . . . 6 𝑀 = (mulGrp‘ℂfld)
3534ringmgp 19704 . . . . 5 (ℂfld ∈ Ring → 𝑀 ∈ Mnd)
3633, 35ax-mp 5 . . . 4 𝑀 ∈ Mnd
3732, 36pm3.2i 470 . . 3 (𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd)
3830submbas 18368 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘𝑁))
3929, 38ax-mp 5 . . . 4 0 = (Base‘𝑁)
40 cnfldbas 20514 . . . . 5 ℂ = (Base‘ℂfld)
4134, 40mgpbas 19641 . . . 4 ℂ = (Base‘𝑀)
42 cnfldadd 20515 . . . . . 6 + = (+g‘ℂfld)
4330, 42ressplusg 16926 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → + = (+g𝑁))
4429, 43ax-mp 5 . . . 4 + = (+g𝑁)
45 cnfldmul 20516 . . . . 5 · = (.r‘ℂfld)
4634, 45mgpplusg 19639 . . . 4 · = (+g𝑀)
47 cnfld0 20534 . . . . . 6 0 = (0g‘ℂfld)
4830, 47subm0 18369 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g𝑁))
4929, 48ax-mp 5 . . . 4 0 = (0g𝑁)
50 cnfld1 20535 . . . . 5 1 = (1r‘ℂfld)
5134, 50ringidval 19654 . . . 4 1 = (0g𝑀)
5239, 41, 44, 46, 49, 51ismhm 18347 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀) ↔ ((𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ ∧ ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1)))
5337, 52mpbiran 705 . 2 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀) ↔ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ ∧ ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1))
542, 21, 28, 53syl3anbrc 1341 1 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  0cn0 12163  cexp 13710  Basecbs 16840  s cress 16867  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300   MndHom cmhm 18343  SubMndcsubmnd 18344  mulGrpcmgp 19635  Ringcrg 19698  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-seq 13650  df-exp 13711  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-cnfld 20511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator