MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmhm Structured version   Visualization version   GIF version

Theorem expmhm 21375
Description: Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
expmhm.1 𝑁 = (ℂflds0)
expmhm.2 𝑀 = (mulGrp‘ℂfld)
Assertion
Ref Expression
expmhm (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem expmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcl 13988 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
21fmpttd 7054 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ)
3 expadd 14013 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
433expb 1120 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
5 nn0addcl 12423 . . . . . 6 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑦 + 𝑧) ∈ ℕ0)
65adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝑦 + 𝑧) ∈ ℕ0)
7 oveq2 7360 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝐴𝑥) = (𝐴↑(𝑦 + 𝑧)))
8 eqid 2733 . . . . . 6 (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) = (𝑥 ∈ ℕ0 ↦ (𝐴𝑥))
9 ovex 7385 . . . . . 6 (𝐴↑(𝑦 + 𝑧)) ∈ V
107, 8, 9fvmpt 6935 . . . . 5 ((𝑦 + 𝑧) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
116, 10syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
12 oveq2 7360 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
13 ovex 7385 . . . . . . 7 (𝐴𝑦) ∈ V
1412, 8, 13fvmpt 6935 . . . . . 6 (𝑦 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) = (𝐴𝑦))
15 oveq2 7360 . . . . . . 7 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
16 ovex 7385 . . . . . . 7 (𝐴𝑧) ∈ V
1715, 8, 16fvmpt 6935 . . . . . 6 (𝑧 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧) = (𝐴𝑧))
1814, 17oveqan12d 7371 . . . . 5 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
1918adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
204, 11, 193eqtr4d 2778 . . 3 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)))
2120ralrimivva 3176 . 2 (𝐴 ∈ ℂ → ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)))
22 0nn0 12403 . . . 4 0 ∈ ℕ0
23 oveq2 7360 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
24 ovex 7385 . . . . 5 (𝐴↑0) ∈ V
2523, 8, 24fvmpt 6935 . . . 4 (0 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = (𝐴↑0))
2622, 25ax-mp 5 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = (𝐴↑0)
27 exp0 13974 . . 3 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2826, 27eqtrid 2780 . 2 (𝐴 ∈ ℂ → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1)
29 nn0subm 21361 . . . . 5 0 ∈ (SubMnd‘ℂfld)
30 expmhm.1 . . . . . 6 𝑁 = (ℂflds0)
3130submmnd 18723 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → 𝑁 ∈ Mnd)
3229, 31ax-mp 5 . . . 4 𝑁 ∈ Mnd
33 cnring 21329 . . . . 5 fld ∈ Ring
34 expmhm.2 . . . . . 6 𝑀 = (mulGrp‘ℂfld)
3534ringmgp 20159 . . . . 5 (ℂfld ∈ Ring → 𝑀 ∈ Mnd)
3633, 35ax-mp 5 . . . 4 𝑀 ∈ Mnd
3732, 36pm3.2i 470 . . 3 (𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd)
3830submbas 18724 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘𝑁))
3929, 38ax-mp 5 . . . 4 0 = (Base‘𝑁)
40 cnfldbas 21297 . . . . 5 ℂ = (Base‘ℂfld)
4134, 40mgpbas 20065 . . . 4 ℂ = (Base‘𝑀)
42 cnfldadd 21299 . . . . . 6 + = (+g‘ℂfld)
4330, 42ressplusg 17197 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → + = (+g𝑁))
4429, 43ax-mp 5 . . . 4 + = (+g𝑁)
45 cnfldmul 21301 . . . . 5 · = (.r‘ℂfld)
4634, 45mgpplusg 20064 . . . 4 · = (+g𝑀)
47 cnfld0 21331 . . . . . 6 0 = (0g‘ℂfld)
4830, 47subm0 18725 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g𝑁))
4929, 48ax-mp 5 . . . 4 0 = (0g𝑁)
50 cnfld1 21332 . . . . 5 1 = (1r‘ℂfld)
5134, 50ringidval 20103 . . . 4 1 = (0g𝑀)
5239, 41, 44, 46, 49, 51ismhm 18695 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀) ↔ ((𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ ∧ ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1)))
5337, 52mpbiran 709 . 2 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀) ↔ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ ∧ ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1))
542, 21, 28, 53syl3anbrc 1344 1 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  0cn0 12388  cexp 13970  Basecbs 17122  s cress 17143  +gcplusg 17163  0gc0g 17345  Mndcmnd 18644   MndHom cmhm 18691  SubMndcsubmnd 18692  mulGrpcmgp 20060  Ringcrg 20153  fldccnfld 21293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-seq 13911  df-exp 13971  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-cmn 19696  df-mgp 20061  df-ur 20102  df-ring 20155  df-cring 20156  df-cnfld 21294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator