Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2104
class class class wbr 5147 (class class class)co 7411
ℝcr 11111 <
clt 11252 − cmin 11448
ℝ+crp 12978 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 df-neg 11451 df-rp 12979 |
This theorem is referenced by: 2swrd2eqwrdeq
14908 tanhlt1
16107 pythagtriplem13
16764 iccntr
24557 icccmplem2
24559 opnreen
24567 evth
24705 ovollb2lem
25237 ismbf3d
25403 itg2seq
25492 itg2cn
25513 dvferm2lem
25738 lhop
25768 dvcnvrelem1
25769 dvcnvrelem2
25770 aaliou3lem7
26098 lgseisenlem1
27114 pntlem3
27348 lt2addrd
32231 prmdvdsbc
32289 ltesubnnd
32295 tpr2rico
33190 fiblem
33695 signstfveq0
33886 mblfinlem3
36830 mblfinlem4
36831 metakunt18
41308 metakunt28
41318 metakunt29
41319 metakunt30
41320 fltltc
41705 suprltrp
44336 suplesup
44347 xrralrecnnge
44398 iooiinicc
44553 sumnnodd
44644 lptre2pt
44654 ioodvbdlimc2lem
44948 dvnmul
44957 stoweidlem18
45032 fourierdlem107
45227 fouriersw
45245 hoiqssbllem3
45638 ovolval5lem2
45667 preimageiingt
45734 smfmullem3
45807 eenglngeehlnmlem2
47511 |