![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltsubrpd | Structured version Visualization version GIF version |
Description: Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
ltsubrpd | ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | ltsubrp 13093 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − 𝐵) < 𝐴) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 < clt 11324 − cmin 11520 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-rp 13058 |
This theorem is referenced by: 2swrd2eqwrdeq 15002 tanhlt1 16208 prmdvdsbc 16773 pythagtriplem13 16874 iccntr 24862 icccmplem2 24864 opnreen 24872 evth 25010 ovollb2lem 25542 ismbf3d 25708 itg2seq 25797 itg2cn 25818 dvferm2lem 26044 lhop 26075 dvcnvrelem1 26076 dvcnvrelem2 26077 aaliou3lem7 26409 lgseisenlem1 27437 pntlem3 27671 lt2addrd 32758 ltesubnnd 32826 tpr2rico 33858 fiblem 34363 signstfveq0 34554 mblfinlem3 37619 mblfinlem4 37620 hashscontpow1 42078 metakunt18 42179 metakunt28 42189 metakunt29 42190 metakunt30 42191 fltltc 42616 suprltrp 45243 suplesup 45254 xrralrecnnge 45305 iooiinicc 45460 sumnnodd 45551 lptre2pt 45561 ioodvbdlimc2lem 45855 dvnmul 45864 stoweidlem18 45939 fourierdlem107 46134 fouriersw 46152 hoiqssbllem3 46545 ovolval5lem2 46574 preimageiingt 46641 smfmullem3 46714 eenglngeehlnmlem2 48472 |
Copyright terms: Public domain | W3C validator |