MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsubrpd Structured version   Visualization version   GIF version

Theorem ltsubrpd 13090
Description: Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
ltsubrpd (𝜑 → (𝐴𝐵) < 𝐴)

Proof of Theorem ltsubrpd
StepHypRef Expression
1 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 rpgecld.2 . 2 (𝜑𝐵 ∈ ℝ+)
3 ltsubrp 13052 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴𝐵) < 𝐴)
41, 2, 3syl2anc 582 1 (𝜑 → (𝐴𝐵) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098   class class class wbr 5152  (class class class)co 7426  cr 11147   < clt 11288  cmin 11484  +crp 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-ltxr 11293  df-sub 11486  df-neg 11487  df-rp 13017
This theorem is referenced by:  2swrd2eqwrdeq  14946  tanhlt1  16146  prmdvdsbc  16707  pythagtriplem13  16805  iccntr  24765  icccmplem2  24767  opnreen  24775  evth  24913  ovollb2lem  25445  ismbf3d  25611  itg2seq  25700  itg2cn  25721  dvferm2lem  25946  lhop  25977  dvcnvrelem1  25978  dvcnvrelem2  25979  aaliou3lem7  26312  lgseisenlem1  27336  pntlem3  27570  lt2addrd  32550  ltesubnnd  32614  tpr2rico  33554  fiblem  34059  signstfveq0  34250  mblfinlem3  37173  mblfinlem4  37174  hashscontpow1  41632  metakunt18  41714  metakunt28  41724  metakunt29  41725  metakunt30  41726  fltltc  42134  suprltrp  44757  suplesup  44768  xrralrecnnge  44819  iooiinicc  44974  sumnnodd  45065  lptre2pt  45075  ioodvbdlimc2lem  45369  dvnmul  45378  stoweidlem18  45453  fourierdlem107  45648  fouriersw  45666  hoiqssbllem3  46059  ovolval5lem2  46088  preimageiingt  46155  smfmullem3  46228  eenglngeehlnmlem2  47907
  Copyright terms: Public domain W3C validator