![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltsubrpd | Structured version Visualization version GIF version |
Description: Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
ltsubrpd | ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | ltsubrp 12111 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − 𝐵) < 𝐴) | |
4 | 1, 2, 3 | syl2anc 580 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 class class class wbr 4843 (class class class)co 6878 ℝcr 10223 < clt 10363 − cmin 10556 ℝ+crp 12074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-ltxr 10368 df-sub 10558 df-neg 10559 df-rp 12075 |
This theorem is referenced by: 2swrd2eqwrdeq 14038 2swrd2eqwrdeqOLD 14039 tanhlt1 15226 pythagtriplem13 15865 iccntr 22952 icccmplem2 22954 opnreen 22962 evth 23086 ovollb2lem 23596 ismbf3d 23762 itg2seq 23850 itg2cn 23871 dvferm2lem 24090 lhop 24120 dvcnvrelem1 24121 dvcnvrelem2 24122 aaliou3lem7 24445 lgseisenlem1 25452 pntlem3 25650 lt2addrd 30034 ltesubnnd 30086 tpr2rico 30474 fiblem 30977 signstfveq0 31173 signstfveq0OLD 31174 mblfinlem3 33937 mblfinlem4 33938 suprltrp 40284 suplesup 40295 xrralrecnnge 40352 iooiinicc 40509 sumnnodd 40602 lptre2pt 40612 ioodvbdlimc2lem 40889 dvnmul 40898 stoweidlem18 40974 fourierdlem107 41169 fouriersw 41187 hoiqssbllem3 41580 ovolval5lem2 41609 preimageiingt 41672 smfmullem3 41742 |
Copyright terms: Public domain | W3C validator |