MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsubrpd Structured version   Visualization version   GIF version

Theorem ltsubrpd 13052
Description: Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
ltsubrpd (𝜑 → (𝐴𝐵) < 𝐴)

Proof of Theorem ltsubrpd
StepHypRef Expression
1 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 rpgecld.2 . 2 (𝜑𝐵 ∈ ℝ+)
3 ltsubrp 13014 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴𝐵) < 𝐴)
41, 2, 3syl2anc 582 1 (𝜑 → (𝐴𝐵) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104   class class class wbr 5147  (class class class)co 7411  cr 11111   < clt 11252  cmin 11448  +crp 12978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257  df-sub 11450  df-neg 11451  df-rp 12979
This theorem is referenced by:  2swrd2eqwrdeq  14908  tanhlt1  16107  pythagtriplem13  16764  iccntr  24557  icccmplem2  24559  opnreen  24567  evth  24705  ovollb2lem  25237  ismbf3d  25403  itg2seq  25492  itg2cn  25513  dvferm2lem  25738  lhop  25768  dvcnvrelem1  25769  dvcnvrelem2  25770  aaliou3lem7  26098  lgseisenlem1  27114  pntlem3  27348  lt2addrd  32231  prmdvdsbc  32289  ltesubnnd  32295  tpr2rico  33190  fiblem  33695  signstfveq0  33886  mblfinlem3  36830  mblfinlem4  36831  metakunt18  41308  metakunt28  41318  metakunt29  41319  metakunt30  41320  fltltc  41705  suprltrp  44336  suplesup  44347  xrralrecnnge  44398  iooiinicc  44553  sumnnodd  44644  lptre2pt  44654  ioodvbdlimc2lem  44948  dvnmul  44957  stoweidlem18  45032  fourierdlem107  45227  fouriersw  45245  hoiqssbllem3  45638  ovolval5lem2  45667  preimageiingt  45734  smfmullem3  45807  eenglngeehlnmlem2  47511
  Copyright terms: Public domain W3C validator