| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsubrpd | Structured version Visualization version GIF version | ||
| Description: Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| ltsubrpd | ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | ltsubrp 12923 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − 𝐵) < 𝐴) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 ℝcr 11000 < clt 11141 − cmin 11339 ℝ+crp 12885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 df-neg 11342 df-rp 12886 |
| This theorem is referenced by: 2swrd2eqwrdeq 14855 tanhlt1 16064 prmdvdsbc 16632 pythagtriplem13 16734 iccntr 24732 icccmplem2 24734 opnreen 24742 evth 24880 ovollb2lem 25411 ismbf3d 25577 itg2seq 25665 itg2cn 25686 dvferm2lem 25912 lhop 25943 dvcnvrelem1 25944 dvcnvrelem2 25945 aaliou3lem7 26279 lgseisenlem1 27308 pntlem3 27542 lt2addrd 32726 ltesubnnd 32797 tpr2rico 33917 fiblem 34403 signstfveq0 34582 mblfinlem3 37699 mblfinlem4 37700 hashscontpow1 42154 fltltc 42694 suprltrp 45367 suplesup 45378 xrralrecnnge 45428 iooiinicc 45582 sumnnodd 45670 lptre2pt 45678 ioodvbdlimc2lem 45972 dvnmul 45981 stoweidlem18 46056 fourierdlem107 46251 fouriersw 46269 hoiqssbllem3 46662 ovolval5lem2 46691 preimageiingt 46758 smfmullem3 46831 gpgedgvtx1 48093 eenglngeehlnmlem2 48770 |
| Copyright terms: Public domain | W3C validator |