Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltsubrpd | Structured version Visualization version GIF version |
Description: Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
ltsubrpd | ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | ltsubrp 12471 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − 𝐵) < 𝐴) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5035 (class class class)co 7155 ℝcr 10579 < clt 10718 − cmin 10913 ℝ+crp 12435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-ltxr 10723 df-sub 10915 df-neg 10916 df-rp 12436 |
This theorem is referenced by: 2swrd2eqwrdeq 14367 tanhlt1 15566 pythagtriplem13 16224 iccntr 23527 icccmplem2 23529 opnreen 23537 evth 23665 ovollb2lem 24193 ismbf3d 24359 itg2seq 24447 itg2cn 24468 dvferm2lem 24690 lhop 24720 dvcnvrelem1 24721 dvcnvrelem2 24722 aaliou3lem7 25049 lgseisenlem1 26063 pntlem3 26297 lt2addrd 30602 prmdvdsbc 30658 ltesubnnd 30664 tpr2rico 31387 fiblem 31888 signstfveq0 32079 mblfinlem3 35402 mblfinlem4 35403 metakunt18 39690 metakunt28 39700 metakunt29 39701 metakunt30 39702 fltltc 40018 suprltrp 42356 suplesup 42367 xrralrecnnge 42421 iooiinicc 42573 sumnnodd 42666 lptre2pt 42676 ioodvbdlimc2lem 42970 dvnmul 42979 stoweidlem18 43054 fourierdlem107 43249 fouriersw 43267 hoiqssbllem3 43657 ovolval5lem2 43686 preimageiingt 43749 smfmullem3 43819 eenglngeehlnmlem2 45545 |
Copyright terms: Public domain | W3C validator |