Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2098
class class class wbr 5152 (class class class)co 7426
ℝcr 11147 <
clt 11288 − cmin 11484
ℝ+crp 13016 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-ltxr 11293 df-sub 11486 df-neg 11487 df-rp 13017 |
This theorem is referenced by: 2swrd2eqwrdeq
14946 tanhlt1
16146 prmdvdsbc
16707 pythagtriplem13
16805 iccntr
24765 icccmplem2
24767 opnreen
24775 evth
24913 ovollb2lem
25445 ismbf3d
25611 itg2seq
25700 itg2cn
25721 dvferm2lem
25946 lhop
25977 dvcnvrelem1
25978 dvcnvrelem2
25979 aaliou3lem7
26312 lgseisenlem1
27336 pntlem3
27570 lt2addrd
32550 ltesubnnd
32614 tpr2rico
33554 fiblem
34059 signstfveq0
34250 mblfinlem3
37173 mblfinlem4
37174 hashscontpow1
41632 metakunt18
41714 metakunt28
41724 metakunt29
41725 metakunt30
41726 fltltc
42134 suprltrp
44757 suplesup
44768 xrralrecnnge
44819 iooiinicc
44974 sumnnodd
45065 lptre2pt
45075 ioodvbdlimc2lem
45369 dvnmul
45378 stoweidlem18
45453 fourierdlem107
45648 fouriersw
45666 hoiqssbllem3
46059 ovolval5lem2
46088 preimageiingt
46155 smfmullem3
46228 eenglngeehlnmlem2
47907 |