| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsubrpd | Structured version Visualization version GIF version | ||
| Description: Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| ltsubrpd | ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | ltsubrp 13045 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − 𝐵) < 𝐴) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 < clt 11269 − cmin 11466 ℝ+crp 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 df-rp 13009 |
| This theorem is referenced by: 2swrd2eqwrdeq 14972 tanhlt1 16178 prmdvdsbc 16745 pythagtriplem13 16847 iccntr 24761 icccmplem2 24763 opnreen 24771 evth 24909 ovollb2lem 25441 ismbf3d 25607 itg2seq 25695 itg2cn 25716 dvferm2lem 25942 lhop 25973 dvcnvrelem1 25974 dvcnvrelem2 25975 aaliou3lem7 26309 lgseisenlem1 27338 pntlem3 27572 lt2addrd 32728 ltesubnnd 32801 tpr2rico 33943 fiblem 34430 signstfveq0 34609 mblfinlem3 37683 mblfinlem4 37684 hashscontpow1 42134 metakunt18 42235 metakunt28 42245 metakunt29 42246 metakunt30 42247 fltltc 42684 suprltrp 45355 suplesup 45366 xrralrecnnge 45417 iooiinicc 45571 sumnnodd 45659 lptre2pt 45669 ioodvbdlimc2lem 45963 dvnmul 45972 stoweidlem18 46047 fourierdlem107 46242 fouriersw 46260 hoiqssbllem3 46653 ovolval5lem2 46682 preimageiingt 46749 smfmullem3 46822 gpgedgvtx1 48066 eenglngeehlnmlem2 48718 |
| Copyright terms: Public domain | W3C validator |