Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
class class class wbr 5147 (class class class)co 7405
ℝcr 11105 <
clt 11244 − cmin 11440
ℝ+crp 12970 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 df-rp 12971 |
This theorem is referenced by: 2swrd2eqwrdeq
14900 tanhlt1
16099 pythagtriplem13
16756 iccntr
24328 icccmplem2
24330 opnreen
24338 evth
24466 ovollb2lem
24996 ismbf3d
25162 itg2seq
25251 itg2cn
25272 dvferm2lem
25494 lhop
25524 dvcnvrelem1
25525 dvcnvrelem2
25526 aaliou3lem7
25853 lgseisenlem1
26867 pntlem3
27101 lt2addrd
31951 prmdvdsbc
32009 ltesubnnd
32015 tpr2rico
32880 fiblem
33385 signstfveq0
33576 mblfinlem3
36515 mblfinlem4
36516 metakunt18
40990 metakunt28
41000 metakunt29
41001 metakunt30
41002 fltltc
41399 suprltrp
44024 suplesup
44035 xrralrecnnge
44086 iooiinicc
44241 sumnnodd
44332 lptre2pt
44342 ioodvbdlimc2lem
44636 dvnmul
44645 stoweidlem18
44720 fourierdlem107
44915 fouriersw
44933 hoiqssbllem3
45326 ovolval5lem2
45355 preimageiingt
45422 smfmullem3
45495 eenglngeehlnmlem2
47377 |